Study on Heat Transfer Coefficient of Supercritical Water Based on Factorial Analysis

2021 ◽  
Author(s):  
Peng Xu ◽  
Tao Zhou ◽  
Ning Chen ◽  
Juan Chen ◽  
Zhongguan Fu

Abstract Heat transfer coefficient has an important influence on the flow and heat transfer of supercritical water in the core channels. The effects of different factors and their interactions on the heat transfer coefficient of the supercritical water were studied by full factorial experimental design method, such as pressure, mass flow rate, heat flux, and inlet temperature. The results show that: Within the range of the tested working conditions, effect D (inlet temperature), effect B (mass flow rate) and effect A (pressure) had a significant impact on the heat transfer coefficient, where the percentage contribution of effect D was 48.21%; effect B was 21.58%; effect A was 15.1%. The percentage contribution of other factors and their interactions on the heat transfer coefficient of the supercritical water can be ignored. At the same time, a prediction formula of heat transfer coefficient on supercritical water was fitted, and it was found that the prediction error of this formula conformed to the assumption of normality, and the prediction error was 10.5%.

Author(s):  
Peng Xu ◽  
Tao Zhou ◽  
Jialei Zhang ◽  
Juan Chen ◽  
Zhongguan Fu

Abstract There are many factors that can affect the heat transfer coefficient (HTC) of supercritical water in forced and natural circulation. The correlation between the factors with the HTC under different circulation modes has an important influence on the reactor core design. By extracting the experimental data of supercritical water in forced circulation and natural circulation, the grey correlation model was used to analyze the relational degree between these factors with HTC. The results show that: Under the condition of forced circulation, there is a positive correlation between the inlet temperature, mass flow velocity, the thickness of the grid body with the HTC of supercritical water, and the order is: mass flow velocity > inlet temperature > the thickness of the grid body; there is a negative correlation between the pressure, heat flux with the heat transfer coefficient of supercritical water, and the order is: pressure > heat flux. Under the condition of natural circulation, there is a positively correlation between heating power, inlet temperature and circulation flow rate with HTC, and the order of magnitude is: circulation flow rate > heating power > inlet temperature; diameter and pressure are negatively correlated with heat transfer coefficient, and the order of magnitude is: pressure > diameter. In the two circulation modes, mass flow rate is an important factor affecting the heat transfer capacity of supercritical water, while the effect of heat flux on the heat transfer coefficient is contrary.


2013 ◽  
Vol 448-453 ◽  
pp. 3312-3315
Author(s):  
Bin Sun ◽  
Bin Bin Cui ◽  
Chao Liang

A three-dimensional physical mode of metal foam tube was built by CFD software. The Brinkman-Forchheimer extended Darcy equation and user-defined function (UFD) of the mass transfer and energy transfer between vapor phase and liquid phase compiled by C language were used in the simulation of boiling heat transfer in metal foam tube. The results show that, at a given mass flow rate, the pressure drop nonlinearly increases as the vapor quality rises; At the low mass flow rate, with the increasing of vapor quality, the flow pattern is transferred to wavy flow from stratified flow and then transfer to stratified wavy flow, while the heat transfer coefficient decreases with the increasing of vapor quality. At the high mass flow rate, with the increasing of vapor quality, the flow pattern is transferred to annular flow from slug flow, while the heat transfer coefficient increases with the increasing of vapor quality. The simulation results agree well with the experimental data.


2013 ◽  
Vol 17 (5) ◽  
pp. 1443-1447
Author(s):  
Hui-Fan Zheng ◽  
Xiao-Wei Fan ◽  
Fang Wang ◽  
Yao-Hua Liang

A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good agreement with the experimental data. The results show that heat capacity and the heat transfer coefficient of the micro-fin evaporator increase with increasing logarithmic mean temperature difference, the water mass flow rate and the refrigerant mass flow rate. Heat capacity of the micro-fin evaporator for diameter 9.52 mm is higher than that of diameter 7.00 mm with using R290 as refrigerant. Heat capacity of the micro-fin evaporator with using R717 as refrigerant is higher than that of R290 as refrigerant. The results of this study can provide useful guidelines for optimal design and operation of micro-fin evaporator in its present or future applications.


Author(s):  
Xiao-qiang Hong ◽  
Dan Huang ◽  
Wei Li ◽  
Hua Zhu

Supercritical fluids are widely used in aeronautic, astronautic and nuclear engineering. Active cooling is necessary for scramjet engines to survive the extreme heat generated in hypersonic flight. Regenerative cooling system, where engine fuel works as coolants and travels through the cooling tubes along the chamber wall, carrying away heat from the wall via heat convection and endothermic chemical reactions, is developed as an effective thermal management technique. In this paper, experimental results of convective heat transfer performances of aviation kerosene at supercritical pressures were presented. Stainless steel circular tubes having inner diameters of 1and 1.8 mm were investigated for pressures ranging from 3 to 4 MPa, mass flow rates from 1.87 to 2.41 g/s and heat fluxes from 285 to 365 kW/m2. It was found that the heat transfer coefficient increases with mass flow rate at the former part of the tube. However, as the Reynolds increases significantly at the latter part of the tube at relatively low mass flow rate, the heat transfer coefficient increases dramatically at the latter part of the tube at relatively low mass flow rate. The effect of heat flux on heat transfer is complicated, while the effect of pressure on heat transfer is insignificant. The experimental results also indicated that the heat transfer coefficient decreases with the reduction in tube diameter. The heat transfer behaviors in relation to changes in tube sizes might be caused by the buoyancy effect.


2019 ◽  
Vol 16 (1) ◽  
pp. 33-44 ◽  
Author(s):  
M.K. Islam ◽  
Md. Hasanuzzaman ◽  
N.A. Rahim ◽  
A. Nahar

Sustainable power generation, energy security, and global warming are the big challenges to the world today. These issues may be addressed through the increased usage of renewable energy resources and concentrated solar energy can play a vital role in this regard. The performance of a parabolic-trough collector’s receiver is here investigated analytically and experimentally using water based and therminol-VP1based CuO, ZnO, Al2O3, TiO2, Cu, Al, and SiC nanofluids. The receiver size has been optimized by a simulation program written in MATLAB. Thus, numerical results have been validated by experimental outcomes under same conditions using the same nanofluids. Increased volumetric concentrations of nanoparticle is found to enhance heat transfer, with heat transfer coefficient the maximum in W-Cu and VP1-SiC, the minimum in W-TiO2 and VP1-ZnO at 0.8 kg/s flow rate. Changing the mass flow rate also affects heat transfer coefficient. It has been observed that heat transfer coefficient reaches its maximum of 23.30% with SiC-water and 23.51% with VP1-SiC when mass-flow rate is increased in laminar flow. Heat transfer enhancement drops during transitions of flow from laminar to turbulent. The maximum heat transfer enhancements of 9.49% and 10.14% were achieved with Cu-water and VP1-SiC nanofluids during turbulent flow. The heat transfer enhancements of nanofluids seem to remain constant when compared with base fluids during either laminar flow or turbulent flow.


2019 ◽  
Vol 9 ◽  
pp. 184798041987646 ◽  
Author(s):  
XiaoRong Zhou ◽  
Yi Wang ◽  
Kai Zheng ◽  
Haozhong Huang

In this study, the cooling performance of nanofluids in car radiators was investigated. A car radiator, temperature measuring instrument, and other components were used to set up the experimental device, and the temperature of nanofluids passing through the radiator was measured by this device. Three kinds of nanoparticles, γ-Al2O3, α-Al2O3, and ZnO, were added to propylene glycol to prepared nanofluids, and the effects of nanoparticle size and type, volume concentration, initial temperature, and flow rate were tested. The results indicated that the heat transfer coefficients of all nanofluids first increased and then decreased with an increase in volume concentration. The ZnO-propylene glycol nanofluid reached a maximum heat transfer coefficient at 0.3 vol%, and the coefficient decreased by 25.6% with an increase in volume concentration from 0.3 vol% to 0.5 vol%. Smaller particles provided a better cooling performance, and the 0.1 vol% γ-Al2O3-propylene glycol nanofluid had a 19.9% increase in heat transfer coefficient compared with that of α-Al2O3-propylene glycol. An increase in flow rate resulted in a 10.5% increase in the heat transfer coefficient of the 0.5 vol% α-Al2O3-propylene glycol nanofluid. In addition, the experimental temperature range of 40–60°C improved the heat transfer coefficient of the 0.2 vol% ZnO-propylene glycol nanofluid by 46.4%.


2015 ◽  
Vol 62 (4) ◽  
pp. 509-522 ◽  
Author(s):  
R. Dharmalingam ◽  
K.K. Sivagnanaprabhu ◽  
J. Yogaraja ◽  
S. Gunasekaran ◽  
R. Mohan

Abstract Cooling is indispensable for maintaining the desired performance and reliability over a very huge variety of products like electronic devices, computer, automobiles, high power laser system etc. Apart from the heat load amplification and heat fluxes caused by many industrial products, cooling is one of the major technical challenges encountered by the industries like manufacturing sectors, transportation, microelectronics, etc. Normally water, ethylene glycol and oil are being used as the fluid to carry away the heat in these devices. The development of nanofluid generally shows a better heat transfer characteristics than the water. This research work summarizes the experimental study of the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 1% Al2O3 (volume concentration) nanoparticle flowing in a parallel flow, counter flow and shell and tube heat exchanger under laminar flow conditions. The Al2O3 nanoparticles of about 50 nm diameter are used in this work. Three different mass flow rates have been selected and the experiments have been conducted and their results are reported. This result portrays that the overall heat transfer coefficient and dimensionless Nusselt number of nanofluid is slightly higher than that of the base liquid at same mass flow rate at same inlet temperature. From the experimental result it is clear that the overall heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate. It shows that whenever mass flow rate increases, the overall heat transfer coefficient along with Nusselt number eventually increases irrespective of flow direction. It was also found that during the increase in mass flow rate LMTD value ultimately decreases irrespective of flow direction. However, shell and tube heat exchanger provides better heat transfer characteristics than parallel and counter flow heat exchanger due to multi pass flow of nanofluid. The overall heat transfer coefficient, Nusselt number and logarithmic mean temperature difference of the water and Al2O3 /water nanofluid are also studied and the results are plotted graphically.


Author(s):  
S. B. Thombre ◽  
S. V. Prayagi ◽  
N. V. Deshpande

The present work deals with experimental studies on heat transfer characteristic for buoyancy induced flow through inclined tubes inserted with twisted strips. The parameters varied during the experimetation are; tube inclination, heat supply twist pitch and fluid inlet temperature. It was found that the percentage enhancement in heat transfer coefficient decreases with increase in pitch and tube inclination. The flow rate is found to decrease with decrease in the pitch and increase in the tube inclination. It was also observed that the heat transfer coefficient and flow rate decreases with the increase in the inlet fluid temperature. This may be due to reduction in Rayleigh number caused because of higher heat loss at the tube surface.


Sign in / Sign up

Export Citation Format

Share Document