Heat Transfer Mechanisms of Propane Boiling on Horizontal Steel Tubes With Smooth and Enhanced Surfaces

Author(s):  
A. Luke ◽  
Bjo¨rn C. F. Mu¨ller

The trend towards a better understanding of the fundamentals of nucleate boiling in re-entrant cavities is supported by the variation of the heating surface’s characteristics and the identification of parameters influencing the heat transfer at enhanced tubes. The optimized surface of enhanced evaporator tubes supports the bubble formation by providing stable nucleation sites, which are cavities that trapped the necessary amount of vapor to generate the next bubble. The optimal size of the cavities for bubble formation depends on various thermodynamic properties of the fluid and the wall material. The knowledge of these physical mechanisms is important for the further optimization. The influence of micro- and macrostructures on the overall heat transfer coefficient is investigated with the refrigerant R134a and the hydrocarbon propane (R290) boiling in a wide range of reduced pressures (p* = ps/pc = 0.03 to 0.5) and heat fluxes (0.05 to 100 kW/m2). The measurements are carried out using a standard apparatus and a horizontally positioned, electrically heated surface with various wall materials. Two different materials — copper and mild steel — with the same surface preparation by polishing are investigated. Furthermore, heat transfer measurements are carried out on a plain mild steel tube and on an industrially manufactured surface of the GEWA-PB type. The polished surfaces demonstrate a deterministic microstructure, the roughness parameters depends strongly on the measurement direction. The heat transfer coefficient as function of the heat flux of the polished copper tube can be described by the correlation of the VDI Heat Atlas, while the mild steel surface differ from former investigations due to the deep re-entrant cavities remaining from the drawn surface. The onset of boiling is nearly the same of both materials because of these cavities on the mild steel surface. As presented in the recent years, the heat transfer of nucleate boiling at tubes with subsurface channels can be divided into different domains, each influenced by different parameters like wettability, the product of vapor density and evaporation enthalpy. The identification of parameters influencing the bubble formation is done by heat transfer measurements, high-speed-video recording and photographic documentation. The experimental results of this work are compared to results of the polished surfaces. The heat transfer coefficient increases drastically for the enhanced tube, especially for beginning nucleation. The same α-q-relationship as on plain tubes is observed for higher pressures and heat fluxes but for three times higher values of the heat transfer coefficient α.

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 160 ◽  
Author(s):  
Bartosz Gil ◽  
Beata Fijałkowska

This paper investigates the nucleate boiling process of dimethyl ether and selected hydrocarbons. The main goal of this study is to measure the heat transfer coefficients of RE170, R600a, and R601, and to compare them with R134a. The experiments were carried out for heat fluxes up to 70 kW/m2. Experimental results have shown a typical trend that the heat transfer coefficient of flammable refrigerants increases as the heat flux increases. Among the tested fluids, the highest values of heat transfer coefficient were obtained for RE170. Available correlations describing this coefficient showed a deviation of up to 93%, as compared to the data obtained. The new correlation was developed by regression analysis taking into account dimensionless variables affecting the boiling process.


Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


Author(s):  
Brandon Hulet ◽  
Andres Martinez ◽  
Melanie Derby ◽  
Amy Rachel Betz

This research experimentally investigates the heat transfer performance of open-micro channels under filmwise condensation conditions. Filmwise condensation is an important factor in the design of steam condensers used in thermoelectric power generation, desalination, and other industrial applications. Filmwise condensation averages five times lower heat transfer coefficients than those present in dropwise condensation, and filmwise condensation is the dominant condensation regime in the steam condensers due to a lack of a durable dropwise condensation surface. Film thickness is also of concern because it is directly proportional to the condenser’s overall thermal resistance. This research focuses on optimizing the channel size to inhibit the creation of a water film and/or to reduce its overall thickness in order to maximize the heat transfer coefficient of the surface. Condensation heat transfer was measured in three square channels and a plane surface as a control. The sizes of the square fins were 0.25 mm; 0.5 mm; and 1 mm, and tests were done at a constant pressure of 6.2 kPa. At lower heat fluxes, the 0.25mm fins perform better, whereas at larger heat fluxes a smooth surface offers better performance. At lower heat fluxes, droplets are swept away by gravity before the channels are flooded. Whereas, at higher heat fluxes, the channels are flooded increasing the total film thickness, thereby reducing the heat transfer coefficient.


Author(s):  
Chaobin Dang ◽  
Minxia Li ◽  
Eiji Hihara

In this study, the boiling heat transfer coefficients of carbon dioxide with a PAG-type lubricating oil entrained from 0 to 5 wt% in a horizontally placed smooth tube with an inner diameter of 2 mm were experimentally investigated under the following operating conditions: mass fluxes from 170 to 320 kg/m2s, heat fluxes from 4.5 to 36 kW/m2, and a saturation temperature of 15 °C. The results show that for a low oil concentration of approximately 0.5% to 1%, no further deterioration of the heat transfer coefficient was observed at higher oil concentrations in spite of a significant decrement of the heat transfer coefficient compared to that under an oil-free condition. The heat flux still had a positive influence on the heat transfer coefficient in low quality regions. However, no obvious influence was observed in high quality regions, which implies that nucleate boiling dominates in the low quality region whereas it is suppressed in the high quality regions. Unlike the mass flux under an oil-free condition, mass flux has a significant influence on the heat transfer coefficient, with a maximum increase of 50% in the heat transfer. On the basis of our experimental measurements of the flow boiling heat transfer of carbon dioxide under wide experimental conditions, a flow boiling heat transfer model for horizontal tubes has been proposed for a mixture of CO2 and polyalkylene glycol (PAG oil) in the pre-dryout region, with consideration of the thermodynamic properties of the mixture. The surface tension and viscosity of the mixture were particularly taken into account. New factors were introduced into the correlation to reflect the suppressive effects of the mass flux and the oil on both the nucleate boiling. It is shown that the calculated results can depict the influence of the mass flux and the heat flux on both nucleate boiling and convection boiling.


Author(s):  
Pega Hrnjak ◽  
Seongho Kim

Flow boiling heat transfer characteristics of CO2 with and without oil were investigated experimentally in horizontal smooth and enhanced tubes with an inner diameter of 11.2 mm. The visualization of flow pattern provides a detailed attributes of the nucleate and the convective boiling heat transfer. In order to investigate the effect of the miscible oil on the heat transfer of CO2, POE (polyolester) RENSIO C85E oil is added to give an oil circulation rate (OCR) between 0.5% and 2%. Results are compared with those of pure CO2. The experimental conditions include evaporation temperatures of −15 °C, mass fluxes from 40 to 200 kg/m2 s, heat fluxes from 0.5 to 10 kW/m2, and vapor qualities from 0.1 to 0.8. Oil generally deteriorates the heat transfer coefficient of pure CO2. The reduction in heat transfer coefficient is most apparent at low vapor qualities, 0.1 to 0.4, and at low mass fluxes, 100 and 200 kg/m2. It is caused by the suppression of nucleate boiling due to increased surface tension. At conditions where the convective boiling contribution is dominant, vapor qualities above 0.5, oil increases heat transfer coefficients. Through visualization, it is shown that the wetted area on the perimeter of inner tube is enhanced due to formation of foaming in the smooth tube. However, such enhancement of heat transfer due to forming is negligible in the enhanced tube, because the enhanced factor due to micro-finned structures is dominant.


1969 ◽  
Vol 91 (1) ◽  
pp. 27-36 ◽  
Author(s):  
B. S. Shiralkar ◽  
Peter Griffith

At slightly supercritical pressure and in the neighborhood of the pseudocritical temperature (which corresponds to the peak in the specific heat at the operating pressure), the heat transfer coefficient between fluid and tube wall is strongly dependent on the heat flux. For large heat fluxes, a marked deterioration takes place in the heat transfer coefficient in the region where the bulk temperature is below the pseudocritical temperature and the wall temperature above the pseudocritical temperature. Equations have been developed to predict the deterioration in heat transfer at high heat fluxes and the results compared with previously available results for steam. Experiments have been performed with carbon dioxide for additional comparison. Limits of safe operation for a supercritical pressure heat exchanger in terms of the allowable heat flux for a particular flow rate have been determined theoretically and experimentally.


2018 ◽  
Vol 26 (01) ◽  
pp. 1850001
Author(s):  
Yushazaziah Mohd-Yunos ◽  
Normah Mohd-Ghazali ◽  
Maziah Mohamad ◽  
Agus Sunjarianto Pamitran ◽  
Jong-Taek Oh

Heat transfer coefficient as an important characteristic in heat exchanger design is determined by the correlation developed from previous experimental work or accumulation of published data. Although discrepancies still exist between the existing correlations and practical data, several researchers claimed theirs as a generalized heat transfer correlation. Through optimization method, this study predicts the heat transfer coefficient of two-phase flow of propane in a small channel at the saturation temperature of 10[Formula: see text]C using two categories of correlation — superposition and asymptotic. Both methods consist of the contribution of nucleate boiling and forced convective heat transfer, the mechanisms that contribute to the total two-phase heat transfer coefficient, which become as two objective functions to be maximized. The optimization of experimental parameters of heat flux, mass flux, channel diameter and vapor quality is done by using genetic algorithm within a range of 5–20[Formula: see text]kW/m2, 100–250[Formula: see text]kg/m2[Formula: see text]s, 1.5–3[Formula: see text]mm and 0.009–0.99, respectively. In the result, the selected correlations under optimized condition agreed on the dominant mechanism at low and high vapor qualities are caused by the nucleate boiling and forced convective heat transfer, respectively. The optimization work served as an alternative approach in identifying optimized parameters from different correlations to achieve high heat transfer coefficient by giving a fast prediction of parameter range, particularly for the investigation of any new refrigerant. In parallel with some experimental works, a quick prediction is possible to reduce time and cost. From the four selected generalized correlations, Bertsch et al. show the closer trend with the reference experimental work until vapor quality of 0.6.


1980 ◽  
Vol 102 (4) ◽  
pp. 701-705 ◽  
Author(s):  
S. Chongrungreong ◽  
H. J. Sauer

Current and previous studies by the authors and others have shown shown that the carryover of oil in refrigeration systems can have a significant influence on the boiling performance in the evaporator of refrigeration systems. This investigation was conducted primarily to develop a general correlation equation for predicting the heat transfer coefficient for refrigerants and refrigerant-oil mixtures under pool boiling conditions. Experimental results were obtained to establish the validity of the correlation equation.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
T. David ◽  
D. Mendler ◽  
A. Mosyak ◽  
A. Bar-Cohen ◽  
G. Hetsroni

The thermal characteristics of a laboratory pin-fin microchannel heat sink were empirically obtained for heat flux, q″, in the range of 30–170 W/cm2, mass flux, m, in the range of 230–380 kg/m2 s, and an exit vapor quality, xout, from 0.2 to 0.75. Refrigerant R 134a (HFC-134a) was chosen as the working fluid. The heat sink was a pin-fin microchannel module installed in open flow loop. Deviation from the measured average temperatures was 1.5 °C at q = 30 W/cm2, and 2.0 °C at q = 170 W/cm2. These results indicate that use of pin-fin microchannel heat sink enables keeping an electronic device near uniform temperature under steady state and transient conditions. The heat transfer coefficient varied significantly with refrigerant quality and showed a peak at an exit vapor quality of 0.55 in all the experiments. At relatively low heat fluxes and vapor qualities, the heat transfer coefficient increased with vapor quality. At high heat fluxes and vapor qualities, the heat transfer coefficient decreased with vapor quality. A noteworthy feature of the present data is the larger magnitude of the transient heat transfer coefficients compared to values obtained under steady state conditions. The results of transient boiling were compared with those for steady state conditions. In contrast to the more common techniques, the low cost technique, based on open flow loop was developed to promote cooling using micropin fin sinks. Results of this experimental study may be used for designing the cooling high power laser and rocket-born electronic devices.


Sign in / Sign up

Export Citation Format

Share Document