Temperature Distribution of a Wave Journal Bearing: Comparison With Test Data

Author(s):  
Nicoleta M. Ene ◽  
Florin Dimofte ◽  
Theo G. Keith ◽  
Robert F. Handschuh

An advanced three-dimensional model is developed to compute the temperature distribution in a wave journal bearing. The analysis takes into account the heat transfer between the film and both the shaft and the bush. The theoretical results are validated by comparison with experimental data.

2011 ◽  
Vol 130-134 ◽  
pp. 1484-1490
Author(s):  
Yan Feng Liu ◽  
Hong Wei Li ◽  
Jing Wei Zhang ◽  
Jin Xue

A three-dimensional model was developed to simulate the laminar flow and convective heat transfer in rectangular silicon microchannels,which have hydraulic diameter of 95.3,92.3 ,85.8 , 80 and 75μm respectively.The rationality of the simulation methods and results were validated by comparing with experimental data. The simulation results indicate that the aspect ratio has a significant impact on the Poiseuille number. Conventional fluid flow theory is fit for researching the fluid flow in microchannels, Po is a constant that is not dependent on the Reynolds number.


1983 ◽  
Vol 105 (3) ◽  
pp. 422-428 ◽  
Author(s):  
J. Ferron ◽  
J. Frene ◽  
R. Boncompain

Both theoretical and experimental thermohydrodynamic problem of a finite length journal bearing is studied. The analysis takes into acount heat transfer between the film and both the shaft and the bush. Cavitation and lubricant recirculation are also taken into account. The experimental program is conducted on an original device to study the performance of a plain bearing. The pressure and the temperature distribution on bearing wall are measured along with the eccentricity ratio and the flows rate for different speeds and loads. The effect on the eccentricity ratio of differential dilatation is underlined. Agreement between theoretical results and experimental data is satisfactory.


Author(s):  
Yilin Zhang ◽  
Shanfang Huang

Two kinds of three-dimensional model are built to simulate the gas entrainment process through a small break in the horizontal coolant pipe at the bottom of the stratified flow. The results were compared with the two-dimensional simulation results and the experimental data. In terms of the two-phase distribution, the simulation results agree well with the experimental data and show much superiority compared with the two-dimensional model. The results verify the reliability of model building, condition setting and calculating method qualitatively and quantitatively. In general, after gas entrainment, the average velocity over cross section increases obviously, but the mass flow rate decreases contrarily. This is because that void fraction meanwhile reduces the fluid density. In addition, it is found that the larger the void fraction of vapor is, the higher the average discharge velocity of the fracture cross-section fluid is. Besides, with the larger internal and external pressure difference, the gas volume fraction and the flow velocity in the break increase, resulting in the mass flow rate increasing along with them. However, since the critical height increases as well, the total loss amount of liquid in the stable effluent stage decreases, and the time before entrainment becomes shorter.


2018 ◽  
Vol 40 (4) ◽  
pp. 34-40
Author(s):  
B.I. Basok ◽  
B.V. Davidenko ◽  
I.K. Bozhko ◽  
M.V. Moroz

By the three-dimensional model of heat transfer in the system "ground - horizontal ground heat exchanger - heat transfer agent", an analysis of the efficiency of the horizontal multi-loop heat exchanger, which is an element of the heat pump system, was carried out. Based on the results of numerical simulation, the time dependence of the heat transfer agent temperature at the outlet from the ground heat exchanger and the amount of heat extracted from the ground is determined. The results of calculations by the presented model are satisfactorily agree with the experimental data.


2021 ◽  
Vol 7 (5) ◽  
pp. 2808-2820
Author(s):  
Deepak Kumar ◽  
Mohammad Zunaid ◽  
Samsher Gautam

Objectives: In the current research three techniques have been operated to enhance the rate of heat transfer in a heat sink. The amalgamation of Impingement of jet, airfoil pillars and Nano fluids are used. Nano fluids has a lot of potential to enhance the heat transportation in contrast to the water. The investigation has been executed with the help of three dimensional numerical model using Computational fluid Dynamics. At the onset the model has been validated with the inspection carried out already in experimental form. The observations in the form of thermal attributes are investigated. From the results the conclusion is made that the use of airfoil pillars and Nano fluids has increased the thermal characteristics of the three dimensional model in the form of heat exchange coefficient by almost 28.2%. The Nano fluid has been utilized for the 0.5% concentration.


Sign in / Sign up

Export Citation Format

Share Document