scholarly journals UNSTEADY HEAT TRANSFER IN A HORIZONTAL GROUND HEAT EXCHANGER

2018 ◽  
Vol 40 (4) ◽  
pp. 34-40
Author(s):  
B.I. Basok ◽  
B.V. Davidenko ◽  
I.K. Bozhko ◽  
M.V. Moroz

By the three-dimensional model of heat transfer in the system "ground - horizontal ground heat exchanger - heat transfer agent", an analysis of the efficiency of the horizontal multi-loop heat exchanger, which is an element of the heat pump system, was carried out. Based on the results of numerical simulation, the time dependence of the heat transfer agent temperature at the outlet from the ground heat exchanger and the amount of heat extracted from the ground is determined. The results of calculations by the presented model are satisfactorily agree with the experimental data.

2012 ◽  
Vol 516-517 ◽  
pp. 316-321
Author(s):  
Zhong Yi Yu ◽  
Yan Hua Chen ◽  
Xiao Liang Tang ◽  
Jian Ping Lei

According to the application conditions of horizontal ground heat exchanger(HGHE) under artificial lake, this paper uses numerical simulation method to do dynamic simulation research of the heat transfer performance of HGHE, analyzes the effect of connection mode and pipe flow velocity on heat transfer performance of HGHE in detail,puts forward efficient HGHE loop formation mode,and will provide effective technical support for ground-source heat pump system design with HGHE.


2013 ◽  
Vol 805-806 ◽  
pp. 547-551
Author(s):  
Shao Wen Shang ◽  
Pei Pei Li ◽  
Dong Wen Fang

In the Ground Source Heat Pump system, the vertical U-tube is the most common ground heat exchanger. The heat transfer between the U-tube and the soil is affected by many factors. For analyzing the influence of these factors on heat transfer of the U-tube, I use GAMBIT software to establish a physical model who is used to simulated the heat exchanging of single U-tube heat exchanger and the surrounding soil physical. and mesh it. On the base, we take advantage of FLUENT software to make numerical simulation. After finishing analysis, we got some conclusions as follows: Under different tube wells depths and different inlet water temperature conditions, with the pipe inlet velocity increases, the heat exchanger performance improves, but the temperature difference between the import and the export will decreases. In addition to improve the inlet temperature of the U-tube, we can significantly increase the transferring heat of the ground heat exchanger.


2021 ◽  
Vol 13 (11) ◽  
pp. 6384
Author(s):  
Adel Eswiasi ◽  
Phalguni Mukhopadhyaya

A ground source heat pump system (GSHP) with a ground heat exchanger (GHE) is a renewable and green technology used for heating and cooling residential and commercial buildings. An innovative U-Tube pipe configuration is suggested to enhance the heat transfer rate in the vertical ground heat exchanger (VGHE). Laboratory experiments are conducted to compare the thermal efficiency of VGHEs with two different pipe configurations: (1) an innovative U-Tube pipe configuration (single U-Tube with two outer fins) and (2) a single U-Tube. The results show that the difference between the inlet and outlet temperatures for the innovative U-Tube pipe configuration was 0.7 °C after 60 h, while it was 0.4 °C for the single U-Tube after the same amount of time. The borehole thermal resistance for the innovative U-Tube pipe configuration was 0.680 m·K/W, which is 29.22% lower than that of the single U-Tube. The heat exchange rate in the innovative U-Tube pipe configuration is increased by 57.95% compared to the conventional single U-Tube. Measured ground temperatures indicate that compared to single U-Tube pipe configuration, the innovative U-Tube pipe configuration has superior heat transfer performance. Based on the experimental results presented in this paper, it was concluded that increasing the surface area significantly by introducing external fins to the U-Tube enhances the heat transfer rate, resulting in increased thermal efficiency of the VGHE.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1762 ◽  
Author(s):  
Zhe Wang ◽  
Fenghui Han ◽  
Yulong Ji ◽  
Wenhua Li

A marine seawater source heat pump is based on the relatively stable temperature of seawater, and uses it as the system’s cold and heat source to provide the ship with the necessary cold and heat energy. This technology is one of the important solutions to reduce ship energy consumption. Therefore, in this paper, the heat exchanger in the CO2 heat pump system with graphene nano-fluid refrigerant is experimentally studied, and the influence of related factors on its heat transfer enhancement performance is analyzed. First, the paper describes the transformation of the heat pump system experimental bench, the preparation of six different mass concentrations (0~1 wt.%) of graphene nanofluid and its thermophysical properties. Secondly, this paper defines graphene nanofluids as beneficiary fluids, the heat exchanger gains cold fluid heat exergy increase, and the consumption of hot fluid heat is heat exergy decrease. Based on the heat transfer efficiency and exergy efficiency of the heat exchanger, an exergy transfer model was established for a seawater source of tube heat exchanger. Finally, the article carried out a test of enhanced heat transfer of heat exchangers with different concentrations of graphene nanofluid refrigerants under simulated seawater constant temperature conditions and analyzed the test results using energy and an exergy transfer model. The results show that the enhanced heat transfer effect brought by the low concentration (0~0.1 wt.%) of graphene nanofluid is greater than the effect of its viscosity on the performance and has a good exergy transfer effectiveness. When the concentration of graphene nanofluid is too high, the resistance caused by the increase in viscosity will exceed the enhanced heat transfer gain brought by the nanofluid, which results in a significant decrease in the exergy transfer effectiveness.


2019 ◽  
Vol 282 ◽  
pp. 02027
Author(s):  
Hauke Hirsch ◽  
Hans Petzold ◽  
John Grunewald

We conducted numerical simulations of a heat pump system connected to a horizontal ground heat exchanger (HGHX), using a coupling of the hygro-thermal simulation software DELPHIN with Modelica. The aim was to study the influence of different HGHX sizes and assemblies as well as the impact of passive cooling on the systems efficiency. We found that the required ground area could be reduced by up to 70 % compared to the recommendation of German standard when the pipes are placed in multiple layers. Passive cooling is possible but has a negligible effect on the systems efficiency.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


Sign in / Sign up

Export Citation Format

Share Document