Optimal Shapes of Fully Embedded Channels for Conjugate Cooling

1999 ◽  
Author(s):  
T. S. Fisher ◽  
K. E. Torrance

Abstract Optimal shapes and geometries are determined for systems involving liquid and gas coolants. The shape of the channel boundary, channel width, and wall thickness are varied to minimize overall thermal resistance under flow constraints involving pressure drop and pump work. The effect of boundary curvature is studied systematically by employing a parameterized boundary shape that spans from rounded rectangles to ellipses to rounded diamonds. The results indicate that increased channel boundary curvature can decrease the optimal distance between channels, and that the optimal boundary shapes of fully embedded channels can be non-rectangular. In particular, elliptic and nearly elliptic shapes are found to produce equivalent optimal thermal performance as rounded rectangular shapes under practical conditions.

2011 ◽  
Vol 8 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Pradeep Hegde ◽  
Mukesh Patil ◽  
K. N. Seetharamu

Thermal performance of a water cooled multistack microchannel heat sink with counterflow arrangement has been analyzed using the finite element method. Performance parameters such as thermal resistance, pressure drop, and pumping power are computed for a typical counterflow heat sink with different number of stacks. The temperature distribution in a typical multistack counterflow microchannel heat sink is obtained for different numbers of stacks and plotted along the channel length. A parametric study involving the effects of number of stacks and channel aspect ratio on thermal resistance and pressure drop of the heat sink is done. The finite element model developed for the analysis is simple and consumes less computational time.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 16 ◽  
Author(s):  
Daxiang Deng ◽  
Guang Pi ◽  
Weixun Zhang ◽  
Peng Wang ◽  
Ting Fu

This work numerically studies the thermal and hydraulic performance of double-layered microchannel heat sinks (DL-MCHS) for their application in the cooling of high heat flux microelectronic devices. The superiority of double-layered microchannel heat sinks was assessed by a comparison with a single-layered microchannel heat sink (SL-MCHS) with the same triangular microchannels. Five DL-MCHSs with different cross-sectional shapes—triangular, rectangular, trapezoidal, circular and reentrant Ω-shaped—were explored and compared. The results showed that DL-MCHS decreased wall temperatures and thermal resistance considerably, induced much more uniform wall temperature distribution, and reduced the pressure drop and pumping power in comparison with SL-MCHS. The DL-MCHS with trapezoidal microchannels performed the worst with regard to thermal resistance, pressure drop, and pumping power. The DL-MCHS with rectangular microchannels produced the best overall thermal performance and seemed to be the optimum when thermal performance was the prime concern. Nevertheless, the DL-MCHS with reentrant Ω-shaped microchannels should be selected when pumping power consumption was the most important consideration.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang

Liquid cooling incorporating microchannels are used to cool electronic chips in order to remove more heat load. However, such microchannels are often designed to be straight with rectangular cross section. In this paper, on the basis of straight microchannels having rectangular cross section (SRC), longitudinal-wavy microchannel (LWC), and transversal microchannel (TWC) were designed, respectively, and then the corresponding laminar flow and heat transfer were investigated numerically. Among them, the channel wall of LWC undulates along the flow direction according to a sinusoidal function while the TWC undulates along the transversal direction. The numerical results show that for removing an identical heat load, the overall thermal resistance of the LWC is decreased with increasing inlet Reynolds number while the pressure drop is increased greatly, so that the overall thermal performance of LWC is inferior to that of SRC under the considered geometries. On the contrary, TWC has a great potential to reduce the pressure drop compared to SRC, especially for higher wave amplitudes at the same Reynolds number. Thus the overall thermal performance of TWC is superior to that of SRC. It is suggested that the TWC can be used to cool chips effectively with much smaller pressure drop penalty. In addition to the overall thermal resistance, other criteria of evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and some controversial results are obtained.


Author(s):  
Arun K. Karunanithi ◽  
Fatemeh Hassanipour

Previous studies have shown that stacked multi-layer mini-channels heat sinks with square or circular channels have advantages over traditional single layered channels in terms of both pressure drop and thermal resistance. In this work, porous media is used in the multi-layered stacked mini-channels instead of square or rectangular channels and the effect of the same on pressure drop and thermal performance is studied. Porosity scaling is done between the layers of porous media and is compared with unscaled stacked multilayer channel. Porosity scaling allows the porosity to vary from one layer to the next layer and could result in a lower pressure drop and better thermal performance.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Mohamed L. Elsayed ◽  
Osama Mesalhy

The attachment of a shield to a heat sink enhances the thermal performance. But, forming slots in the shield increases thermal resistance. We found that increasing the slot width enhances the flow performance over the heat sink and this improvement continues as the number of slots increases, but the thermal performance, on the other hand, decreases. Slots work as a flow bypass and create jets to destroy eddies and vortices created by the shield. Therefore, pressure drop at Re = 55,000 for a slotted case is about 80% lower than a solid shield. For suitable thermal resistance and moderate pressure drop, the appropriate slotted shield will have 3–7 slots at different slot widths. These slots preserve the improvement of thermal resistance with a suitable pressure drop.


Author(s):  
M. P. Wang ◽  
H. T. Chen ◽  
J. T. Horng ◽  
T. Y. Wu ◽  
P. L. Chen ◽  
...  

An effective method for predicting the optimal thermal performance of partially-confined compact heat sinks under multi-constraints of pressure drop and heat sink mass has been successfully developed. The design variables of PPF compact heat sinks include: heat sink fin and base material, thickness of heat sink base, heat flux, channel top bypass and inlet flow velocity. A total of 108 experimental cases for confined forced convection are designed by the Central Composite Design (CCD) method. According to the results in ANOVA, a sensitivity analysis for the design factors is performed. From the analysis, the effect of inlet flow velocity, which has the contribution percentage of 86.24%, dominates the thermal performance. The accuracies of the quadratic RSM models for both thermal resistance and pressure drop have been verified by comparing the predicted response values to the actual experimental data. The maximum deviations of thermal resistance and pressure drop are 9.41% and 7.20% respectively. The Response Surface Methodology is applied to establish analytical models of the thermal resistance and pressure drop constraints in terms of the key design factors with a CCD experimental design. By employing the Sequential Quadratic Programming technique, a series of constrained optimal designs can be efficiently performed. The numerical optimization results for four cases under different constraints are obtained, and the comparisons between these predicted optimal designs and those measured by the experimental data are made with a satisfactory agreement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farideh Haghighi ◽  
Zahra Talebpour ◽  
Amir Sanati-Nezhad

AbstractFlow distributor located at the beginning of the micromachined pillar array column (PAC) has significant roles in uniform distribution of flow through separation channels and thus separation efficiency. Chip manufacturing artifacts, contaminated solvents, and complex matrix of samples may contribute to clogging of the microfabricated channels, affect the distribution of the sample, and alter the performance of both natural and engineered systems. An even fluid distribution must be achieved cross-sectionally through careful design of flow distributors and minimizing the sensitivity to clogging in order to reach satisfactory separation efficiency. Given the difficulty to investigate experimentally a high number of clogging conditions and geometries, this work exploits a computational fluid dynamic model to investigate the effect of various design parameters on the performance of flow distributors in equally spreading the flow along the separation channels in the presence of different degrees of clogging. An array of radially elongated hexagonal pillars was selected for the separation channel (column). The design parameters include channel width, distributor width, aspect ratio of the pillars, and number of contact zone rows. The performance of known flow distributors, including bifurcating (BF), radially interconnected (RI), and recently introduced mixed-mode (MMI) in addition to two new distributors designed in this work (MMII and MMIII) were investigated in terms of mean elution time, volumetric variance, asymmetry factors, and pressure drop between the inlet and the monitor line for each design. The results show that except for pressure drop, the channel width and aspect ratio of the pillars has no significant influence on flow distribution pattern in non-clogged distributors. However, the behavior of flow distributors in response to clogging was found to be dependent on width of the channels. Also increasing the distributor width and number of contact zone rows after the first splitting stage showed no improvement in the ability to alleviate the clogging. MMI distributor with the channel width of 3 µm, aspect ratio of the pillars equal to 20, number of exits of 8, and number of contact zones of 3 exhibited the highest stability and minimum sensitivity to different degrees of clogging.


Sign in / Sign up

Export Citation Format

Share Document