scholarly journals Numerical Study of Double-Layered Microchannel Heat Sinks with Different Cross-Sectional Shapes

Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 16 ◽  
Author(s):  
Daxiang Deng ◽  
Guang Pi ◽  
Weixun Zhang ◽  
Peng Wang ◽  
Ting Fu

This work numerically studies the thermal and hydraulic performance of double-layered microchannel heat sinks (DL-MCHS) for their application in the cooling of high heat flux microelectronic devices. The superiority of double-layered microchannel heat sinks was assessed by a comparison with a single-layered microchannel heat sink (SL-MCHS) with the same triangular microchannels. Five DL-MCHSs with different cross-sectional shapes—triangular, rectangular, trapezoidal, circular and reentrant Ω-shaped—were explored and compared. The results showed that DL-MCHS decreased wall temperatures and thermal resistance considerably, induced much more uniform wall temperature distribution, and reduced the pressure drop and pumping power in comparison with SL-MCHS. The DL-MCHS with trapezoidal microchannels performed the worst with regard to thermal resistance, pressure drop, and pumping power. The DL-MCHS with rectangular microchannels produced the best overall thermal performance and seemed to be the optimum when thermal performance was the prime concern. Nevertheless, the DL-MCHS with reentrant Ω-shaped microchannels should be selected when pumping power consumption was the most important consideration.

2005 ◽  
Vol 2 (2) ◽  
pp. 122-131
Author(s):  
Pradeep Hegde ◽  
K.N. Seetharamu ◽  
P.A. Aswatha Narayana ◽  
Zulkifly Abdullah

Stacked microchannel heat sinks with two-phase flow have been analyzed using the Finite Element Method (FEM). The present method is a simple and practical approach for analyzing the thermal performance of single or multi layered microchannel heat sinks with either single or two-phase flow. A unique 10 noded finite element is used for the channel discretization. Two-phase thermal resistance, pressure drop and pumping power of single, double and triple stack microchannel heat sinks are determined at different base heat fluxes ranging from 150 W/cm2 to 300 W/cm2. The temperature distribution along the length of the microchannel is also plotted. It is found that stacked microchannel heat sinks with two-phase flow are thermally more efficient than two-phase single layer microchannel heat sinks, both in terms of thermal resistance and pumping power requirements. It is observed that the thermal resistance of a double stack microchannel heat sink with two-phase flow is about 40% less than that for a single stack heat sink. A triple stack heat sink yields a further 20% reduction in the thermal resistance and at the same time operates with about 30% less pumping power compared to a single stack heat sink. The effect of channel aspect ratio on the thermal resistance and pressure drop of stacked microchannel heat sinks with two-phase flow are also studied.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang

Liquid cooling incorporating microchannels are used to cool electronic chips in order to remove more heat load. However, such microchannels are often designed to be straight with rectangular cross section. In this paper, on the basis of straight microchannels having rectangular cross section (SRC), longitudinal-wavy microchannel (LWC), and transversal microchannel (TWC) were designed, respectively, and then the corresponding laminar flow and heat transfer were investigated numerically. Among them, the channel wall of LWC undulates along the flow direction according to a sinusoidal function while the TWC undulates along the transversal direction. The numerical results show that for removing an identical heat load, the overall thermal resistance of the LWC is decreased with increasing inlet Reynolds number while the pressure drop is increased greatly, so that the overall thermal performance of LWC is inferior to that of SRC under the considered geometries. On the contrary, TWC has a great potential to reduce the pressure drop compared to SRC, especially for higher wave amplitudes at the same Reynolds number. Thus the overall thermal performance of TWC is superior to that of SRC. It is suggested that the TWC can be used to cool chips effectively with much smaller pressure drop penalty. In addition to the overall thermal resistance, other criteria of evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and some controversial results are obtained.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Weihong Zhang ◽  
Bengt Sunden

With the increasing output power of the integrated circuit chips, the heat flux involved is being accordingly increased. In such situation, the air has almost reached its limit of cooling capacity, and thus the liquid cooling technology incorporating microchannel heat sinks is desired to cool the electronic chips in order to remove more heat loads. However, these microchannel heat sinks are often designed to be straight with rectangular cross section. In this study, on the basis of a straight microchannel having rectangular cross section, a kind of transversal wavy microchannel is designed and then the laminar flow and heat transfer are investigated numerically. It is shown that for removing the identical load, the transversal wavy microchannel has great potential to reduce pressure drop compared to the straight microchannel, especially for higher wave amplitude at the same Reynolds number, indicating the overall thermal performance of the transversal wavy microchannel is superior to the traditional straight rectangular microchannel. It is suggested such wavy microchannel can be used to cool chips effectively with much smaller pressure drop penalty.


Author(s):  
L. K. Tartibu ◽  
M. O. Okwu

Abstract The increase of heat generated in integrated circuit because of the miniaturization of electronic components requires more aggressive cooling solutions in order to minimize this high heat flux and address the temperature non-uniformity. In this paper, a manifold microchannel heat sinks has been investigated. In order to enhance the heat transfer performance of the microchannel, an improved version of the augmented epsilon constraint method is adopted for the optimization of the device. Four non-dimensional design variables have been used to describe the geometry of the manifold microchannel heat sinks. The thermal performance and the pumping power have been incorporated in the mathematical programming formulation as indicators of the thermal performance. A surrogate-based approximation based on the Response Surface Approximation has been utilized to evaluate these two objectives. This new mathematical approach has been implemented in the General Algebraic Modelling Systems (GAMS). Details about single and multi-objective optimization formulation of the problem will be disclosed. Optimal solutions describing the best geometrical configuration of the device will be computed. The implications of the geometrical configuration on the performance the manifold microchannel heat sinks will form part of the main contribution of this study.


Author(s):  
Arun K. Karunanithi ◽  
Fatemeh Hassanipour

Previous studies have shown that stacked multi-layer mini-channels heat sinks with square or circular channels have advantages over traditional single layered channels in terms of both pressure drop and thermal resistance. In this work, porous media is used in the multi-layered stacked mini-channels instead of square or rectangular channels and the effect of the same on pressure drop and thermal performance is studied. Porosity scaling is done between the layers of porous media and is compared with unscaled stacked multilayer channel. Porosity scaling allows the porosity to vary from one layer to the next layer and could result in a lower pressure drop and better thermal performance.


Author(s):  
Wenming Li ◽  
Fanghao Yang ◽  
Tamanna Alam ◽  
Congcong Ren

This paper aims to study the overall performance of circular and zig-zag square microchannel heat sinks with single phase liquid flow via a numerical parametric study. Thermal resistance and pressure drop when subjected to key geometric parameters such as hydraulic diameter, orientation, and connector length is numerically investigated with Reynolds number ranging from 50 to 500. Specifically, the hydraulic diameter is varied from 100 μm to 300 μm with an increment of 100 μm; the orientation angle of 10°, 20° and 30° is studied. A figure of merit (FOM) involving both the thermal resistance and pressure drop is introduced to evaluate the performance. Results show that hydraulic diameter is critical to thermal resistance and pressure drop compared to orientation angle. Zig-zag microchannel heat sink shows better performance compared with heat sinks with circular microchannel. FOM varies considerably with the change in hydraulic diameter and flow rate.


Sign in / Sign up

Export Citation Format

Share Document