Heat Sink With Stacked Multi-Layer Porous Media

Author(s):  
Arun K. Karunanithi ◽  
Fatemeh Hassanipour

Previous studies have shown that stacked multi-layer mini-channels heat sinks with square or circular channels have advantages over traditional single layered channels in terms of both pressure drop and thermal resistance. In this work, porous media is used in the multi-layered stacked mini-channels instead of square or rectangular channels and the effect of the same on pressure drop and thermal performance is studied. Porosity scaling is done between the layers of porous media and is compared with unscaled stacked multilayer channel. Porosity scaling allows the porosity to vary from one layer to the next layer and could result in a lower pressure drop and better thermal performance.

Author(s):  
M. P. Wang ◽  
H. T. Chen ◽  
J. T. Horng ◽  
T. Y. Wu ◽  
P. L. Chen ◽  
...  

An effective method for predicting the optimal thermal performance of partially-confined compact heat sinks under multi-constraints of pressure drop and heat sink mass has been successfully developed. The design variables of PPF compact heat sinks include: heat sink fin and base material, thickness of heat sink base, heat flux, channel top bypass and inlet flow velocity. A total of 108 experimental cases for confined forced convection are designed by the Central Composite Design (CCD) method. According to the results in ANOVA, a sensitivity analysis for the design factors is performed. From the analysis, the effect of inlet flow velocity, which has the contribution percentage of 86.24%, dominates the thermal performance. The accuracies of the quadratic RSM models for both thermal resistance and pressure drop have been verified by comparing the predicted response values to the actual experimental data. The maximum deviations of thermal resistance and pressure drop are 9.41% and 7.20% respectively. The Response Surface Methodology is applied to establish analytical models of the thermal resistance and pressure drop constraints in terms of the key design factors with a CCD experimental design. By employing the Sequential Quadratic Programming technique, a series of constrained optimal designs can be efficiently performed. The numerical optimization results for four cases under different constraints are obtained, and the comparisons between these predicted optimal designs and those measured by the experimental data are made with a satisfactory agreement.


2020 ◽  
Vol 319 ◽  
pp. 02004
Author(s):  
Muhammad Akif Rahman ◽  
Md Badrath Tamam ◽  
Md Sadman Faruque ◽  
A.K.M. Monjur Morshed

In this paper a numerical analysis of three-dimensional laminar flow through rectangular channel heat sinks of different geometric configuration is presented and a comparison of thermal performance among the heat sinks is discussed. Liquid water was used as coolant in the aluminum made heat sink with a glass cover above it. The aspect ratio (section height to width) of rectangular channels of the mini-channel heat sink was 0.33. A heat flux of 20 W/cm2 was continuously applied at the bottom of the channel with different inlet velocity for Reynold’s number ranging from 150 to 1044. Interconnectors and obstacles at different positions and numbers inside the channel were introduced in order to enhance the thermal performance. These modifications cause secondary flow between the parallel channels and the obstacles disrupt the boundary layer formation of the flow inside the channel which leads to the increase in heat transfer rate. Finally, Nusselt number, overall thermal resistance and maximum temperature of the heat sink were calculated to compare the performances of the modified heat sinks with the conventional mini channel heat sink and it was observed that the heat sink with both interconnectors and obstacles enhanced the thermal performance more significantly than other configurations. A maximum of 36% increase in Nusselt number was observed (for Re =1044).


2005 ◽  
Vol 128 (4) ◽  
pp. 412-418 ◽  
Author(s):  
Zhipeng Duan ◽  
Y. S. Muzychka

Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.


Author(s):  
Krishna Kota ◽  
Mohamed M. Awad

In this effort, theoretical modeling was employed to understand the impact of flow bypass on the thermal performance of air cooled heat sinks. Fundamental mass and flow energy conservation equations across a longitudinal fin heat sink configuration and the bypass region were applied and a generic parameter, referred as the Flow Bypass Factor (α), was identified from the theoretical solution that mathematically captures the effect of flow bypass as a quantifiable parameter on the junction-to-ambient thermal resistance of the heat sink. From the results obtained, it was found that, at least in the laminar regime, the impact of flow bypass on performance can be neglected for cases when the bypass gap is typically less than 5% of the fin height, and is almost linear at high relative bypass gaps (i.e., usually for bypass gaps that are more than 10–15% of the fin height). It was also found that the heat sink thermal resistance is more sensitive to small bypass gaps and the effect of flow bypass decreases with increasing bypass gap.


2011 ◽  
Vol 8 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Pradeep Hegde ◽  
Mukesh Patil ◽  
K. N. Seetharamu

Thermal performance of a water cooled multistack microchannel heat sink with counterflow arrangement has been analyzed using the finite element method. Performance parameters such as thermal resistance, pressure drop, and pumping power are computed for a typical counterflow heat sink with different number of stacks. The temperature distribution in a typical multistack counterflow microchannel heat sink is obtained for different numbers of stacks and plotted along the channel length. A parametric study involving the effects of number of stacks and channel aspect ratio on thermal resistance and pressure drop of the heat sink is done. The finite element model developed for the analysis is simple and consumes less computational time.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 16 ◽  
Author(s):  
Daxiang Deng ◽  
Guang Pi ◽  
Weixun Zhang ◽  
Peng Wang ◽  
Ting Fu

This work numerically studies the thermal and hydraulic performance of double-layered microchannel heat sinks (DL-MCHS) for their application in the cooling of high heat flux microelectronic devices. The superiority of double-layered microchannel heat sinks was assessed by a comparison with a single-layered microchannel heat sink (SL-MCHS) with the same triangular microchannels. Five DL-MCHSs with different cross-sectional shapes—triangular, rectangular, trapezoidal, circular and reentrant Ω-shaped—were explored and compared. The results showed that DL-MCHS decreased wall temperatures and thermal resistance considerably, induced much more uniform wall temperature distribution, and reduced the pressure drop and pumping power in comparison with SL-MCHS. The DL-MCHS with trapezoidal microchannels performed the worst with regard to thermal resistance, pressure drop, and pumping power. The DL-MCHS with rectangular microchannels produced the best overall thermal performance and seemed to be the optimum when thermal performance was the prime concern. Nevertheless, the DL-MCHS with reentrant Ω-shaped microchannels should be selected when pumping power consumption was the most important consideration.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Yanquan Liu ◽  
Bengt Sunden ◽  
Weihong Zhang

Liquid cooling incorporating microchannels are used to cool electronic chips in order to remove more heat load. However, such microchannels are often designed to be straight with rectangular cross section. In this paper, on the basis of straight microchannels having rectangular cross section (SRC), longitudinal-wavy microchannel (LWC), and transversal microchannel (TWC) were designed, respectively, and then the corresponding laminar flow and heat transfer were investigated numerically. Among them, the channel wall of LWC undulates along the flow direction according to a sinusoidal function while the TWC undulates along the transversal direction. The numerical results show that for removing an identical heat load, the overall thermal resistance of the LWC is decreased with increasing inlet Reynolds number while the pressure drop is increased greatly, so that the overall thermal performance of LWC is inferior to that of SRC under the considered geometries. On the contrary, TWC has a great potential to reduce the pressure drop compared to SRC, especially for higher wave amplitudes at the same Reynolds number. Thus the overall thermal performance of TWC is superior to that of SRC. It is suggested that the TWC can be used to cool chips effectively with much smaller pressure drop penalty. In addition to the overall thermal resistance, other criteria of evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and some controversial results are obtained.


2021 ◽  
pp. 81-81
Author(s):  
Zulfiqar Khattak ◽  
Hafiz Ali

Heat dissipation is becoming more and more challenging with the preface of new electronic components having staggering heat generation levels. Present day solutions should have optimized outcomes with reference to the heat sink scenarios. The experimental and theoretical results for plate type heat sink based on mathematical models have been presented in the first part of the paper. Then the parametric optimization (topology optimization) of plate type heat sink using Levenberg-Marquardt technique employed in the COMSOL Multiphysics? software is discussed. Thermal resistance of heat sink is taken as objective function against the variable length in a predefined range. Single as well as multi-parametric optimization of plate type heat sink is reported in the context of pressure drop and air velocity (Reynolds number) inside the tunnel. The results reported are compared with the numerical modeled data and experimental investigation to establish the conformity of results for applied usage. Mutual reimbursements of greater heat dissipation with minimum flow rates are confidently achievable through balanced, heat sink geometry as evident by the presented simulation outcome. About 12% enhancement in pressure drop and up to 51% improvement in thermal resistance is reported for the optimized plate fin heat sink as per data manifested.


2016 ◽  
Vol 20 (6) ◽  
pp. 2001-2013 ◽  
Author(s):  
Shanglong Xu ◽  
Yihao Wu ◽  
Qiyu Cai ◽  
Lili Yang ◽  
Yue Li

The objective is to optimize the configuration sizes and thermal performance of a multilayer silicon microchannel heat sink by the thermal resistance network model. The effect of structural parameter on the thermal resistance is analyzed by numercal simulation. Taking the thermal resistance as an objective function, a nonlinear and multi-constrained optimization model are proposed for the silicon microchannel heat sink in electronic chips cooling. The sequential quadratic programming (SQP) method is used to do the optimization design of the configuration sizes of the microchannel. For the heat sink with the size of 20mm?20mm and the power of 400 W, the optimized microchannel number, layer, height and width are 40 and 2, 2.2mm and 0.2mm, respectively, and its corresponding total thermal resistance for whole microchannel heat sink is 0.0424 K/W.


Sign in / Sign up

Export Citation Format

Share Document