Experimental Studies of Hydrodynamics and Heat Transfer in Channels With High-Porous Cellular Materials in Single-Phase Forced Convection and Flow Boiling of Working Fluids

1999 ◽  
Author(s):  
Yury F. Gortyshov ◽  
Igor A. Popov ◽  
Konstantin E. Gulitsky

Abstract In this paper we consider experimental studies of hydraulic resistance, surface heat transfer, internal heat exchange and critical heat fluxes for the flow of single-phase and boiling working fluids in channels with high-porous inserts. Experiments were carried out with more than 40 samples of high-porous cellular materials with the porosity 0.8...0.98 and mean pore diameter 0.62...4 mm and with more than 10 samples of regular porous inserts and porosity ε = 0.512...0.86 and mean pore diameter 1.5...3.5 mm. These samples were made of porcelain, invar, nichrome, bronze and copper.

Author(s):  
Peipei Chen ◽  
Barclay G. Jones ◽  
Ty A. Newell

This work reports on experimental studies to visualize nucleate boiling on the enhanced heat transfer surface of the hypervapotron for with application in the International Thermonuclear Experiment Reactor [ITER]. This research uses the simulant fluid Freon (R134A) instead of prototypic water to model the system performance. This results in much lower thermophysical conditions to represent the prototypic phenomena. By using reduced pressure, temperatures, etc, based on the critical physical properties of both working fluids, Freon and water, the dramatic drop in the level of these quantities with Freon allows the use of modest test conditions. The experiment was conducted for both saturated and subcooled boiling with different heat fluxes (from 50 to 300 kW/m2). A comparison of the heat transfer performance of finned structures and flat surfaces were examined under particular fluid conditions. The uniqueness of this work is the visualization method that allows direct observation of the subcooled boiling process of the Hypervapotron surfaces. Working with a high speed (12,000 frames per second), high fidelity digital camera with variable magnifications (from 1×–25×), the sub-cooled boiling phenomena was observed in detail. A major conclusion of this work is the existence of two separate zones linked to different energy removal efficiency in hypervapotron. Under high heat flux condition, enhanced boiling heat transfer (about 20–30% higher than flat surface) was observed for hypervapotron effect, while saturated boiling happened in the cavity, and a large portion of the region was vapor filled. The process of vapor bubble rotation in the slot appeared to be helpful to enhance energy transfer, as evidenced by an improved wetting condition on the heating surfaces.


1987 ◽  
Vol 109 (1) ◽  
pp. 97-103 ◽  
Author(s):  
P. W. Eckels ◽  
J. H. Parker ◽  
A. Patterson

Experimental analyses of the effects of secondary flows on heat transfer in high tip speed rotating apparatus are not readily available. This paper provides data on the heat transfer within two different test modules which were rotated at high speed with the heat transfer surfaces perpendicular and parallel to the Coriolis acceleration. One module contained a heated wall and another a parallel plate free convection experiment. Uniform heat fluxes were maintained. Rayleigh numbers in excess of 1015 were achieved with liquid helium as the transfer medium. Some of the findings are that secondary flows can reduce heat transfer by as much as 60 percent in single-phase heat transfer, the transitions to fully turbulent flow are in agreement with existing prediction methods, the critical heat flux in two-phase flow boiling is significantly increased, forced convection correlations underpredict single-phase thermosyphon performance, and the usual nondimensional parameters of free convection establish similitude between various fluids and speeds. These results suggest that techniques used to enhance heat transfer in the rotating frame should be verified by tests in the rotating frame.


Author(s):  
Ali Can Ispir ◽  
Tugce Karatas ◽  
Eren Dikec ◽  
Seyhan Onbasioglu

This paper focuses on experimental studies of boiling heat transfer on surfaces with reentrant tunnels and pores. Three structured surface which have same tunnel width and height but different pore diameter, have been developed for enhancement boiling heat transfer. The experimental studies were carried out for the structured surfaces using distilled water at atmospheric pressure. The narrow reentrant tunnels are parallel to each other and have 3 mm width, 4 mm height. A number of pores whose diameter 1.5 and 2.0 mm were machined on lateral surfaces of tunnels. The surfaces were termed according to their geometric specifications as 3.0W-30-30, 1.5D-3.0W-30-30, 2.0D-3.0W-30-30. D and W capitals represent pore diameter and tunnel width, respectively. 30-30 part of name shows the dimension of square surface. The tunnels were used to increase area of heat transfer and active nucleation sites of vapor bubbles. In addition, sufficient amount of liquid must be supplied and vapor bubbles should be released fast from the boiling surface before they merge on the surfaces under conditions especially with high heat fluxes. Therefore, it was considered that pore structures would help for fluid transition hence the bubble frequency will increase. Pool boiling experiments were held to determine the performance of surfaces in different range of heat fluxes. Besides, high-speed visualization studies were conducted with high speed camera to observe behavior of nucleation of vapor bubbles. Amongst different geometry sizes the surface which has 1.5 mm of pore diameter (1.5D-3.0W-30-30) demonstrated the best nucleate boiling performance at high heat fluxes. However, the pored ones without pores has higher augmentation than pored structures at low heat fluxes. Thus, it is concluded that pored structures caused active nucleation sites to decrease under low heat fluxes.


Author(s):  
Raj M. Manglik ◽  
Arthur E. Bergles

By generating helical swirling motion inside a tube with a twisted-tape insert, forced convective heat transfer is significantly enhanced. The primary mechanism entails imparting a centrifugal force component to the longitudinal fluid motion, which superimposes secondary circulation over the main axial flow to promote cross-stream mixing. Based on experimental flow visualization and computational modeling of single-phase laminar flows, a fundamental scaling of the cross-sectional vortex structure and a parametric analysis of the primary enhancement mechanisms in single-phase flows are delineated. Heat transfer coefficient and friction factor correlations for both laminar and turbulent regimes are presented, and the damping effect of swirl on the transition region is highlighted. In flow boiling with net vapor generation, tape-twist-induced helical swirl pushes liquid droplets from the core to the wall to enhance heat transfer and delay dryout. In subcooled boiling, the radial pressure gradient due to the swirl promotes vapor removal from the heated surface to retard vapor blanketing and accommodate higher heat fluxes. The scaling and phenomenological descriptions of the underlying vapor-liquid transport in these different boiling modes and regimes are presented along with any available predictive correlations.


Author(s):  
Todd M. Bandhauer ◽  
Taylor A. Bevis

The principle limit for achieving higher brightness of laser diode arrays is thermal management. State of the art laser diodes generate heat at fluxes in excess of 1 kW cm−2 on a plane parallel to the light emitting edge. As the laser diode bars are packed closer together, it becomes increasingly difficult to remove large amounts of heat in the diminishing space between neighboring diode bars. Thermal management of these diode arrays using conduction and natural convection is practically impossible, and, therefore, some form of forced convective cooling must be utilized. Cooling large arrays of laser diodes using single-phase convection heat transfer has been investigated for more than two decades by multiple investigators. Unfortunately, either large fluid temperature increases or very high flow velocities must be utilized to reject heat to a single phase fluid, and the practical threshold for single phase convective cooling of laser diodes appears to have been reached. In contrast, liquid-vapor phase change heat transport can occur with a negligible increase in temperature and, due to a high enthalpy of vaporization, at comparatively low mass flow rates. However, there have been no prior investigations at the conditions required for high brightness edge emitting laser diode arrays: >1 kW cm−2 and >10 kW cm−3. In the current investigation, flow boiling heat transfer at heat fluxes up to 1.1 kW cm−2 was studied in a microchannel heat sink with plurality of very small channels (45 × 200 microns) using R134a as the phase change fluid. The high aspect ratio channels (4.4:1) were manufactured using MEMS fabrication techniques, which yielded a large heat transfer surface area to volume ratio in the vicinity of the laser diode. To characterize the heat transfer performance, a test facility was constructed that enabled testing over a range of fluid saturation temperatures (15°C to 25°C). Due to the very small geometric features, significant heat spreading was observed, necessitating numerical methods to determine the average heat transfer coefficient from test data. This technique is crucial to accurately calculate the heat transfer coefficients for the current investigation, and it is shown that the analytical approach used by many previous investigations requires assumptions that are inadequate for the very small dimensions and heat fluxes observed in the present study. During the tests, the calculated outlet vapor quality exceeded 0.6 and the base heat flux reached a maximum of 1.1 kW cm−2. The resulting experimental heat transfer coefficients are found to be as large a 58.1 kW m−2 K−1 with an average uncertainty of ±11.1%, which includes uncertainty from all measured and calculated values, required assumptions, and geometric discretization error from meshing.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2011 ◽  
Vol 312-315 ◽  
pp. 548-553 ◽  
Author(s):  
Yuan Wang ◽  
Khellil Sefiane

Single vapour bubble growth and heat transfer mechanism during flow boiling in a rectangular horizontal mini-channel were experimentally investigated. The hydraulic diameter of the channel was 1454 μm, with an aspect ratio (Win/din) of 10. Degassed FC-72 was used as the working liquid. In this paper, bubble equivalent radius was found to increase linearly till a critical time, beyond which the growth turned into exponential. Bubble growth rate increases with increasing heat flux. Heat transfer mechanisms of the bubble growth at different heat fluxes and mass fluxes were discussed. In addition, the relation between thermal and flow conditions with bubble temporal geometry was explored.


Author(s):  
Jianyun Shuai ◽  
Rudi Kulenovic ◽  
Manfred Groll

Flow boiling in small-sized channels attracted extensive investigations in the past two decades due to special requirements for transfer of high heat fluxes from narrow spaces in various industrial applications. Experiments on various aspects of flow boiling in narrow channels were carried out and theoretical attempts were undertaken. But these investigations showed large differences, e.g. up till now the knowledge on the development of flow patterns in small non-circular flow passages is very limited. This paper deals with investigations on flow boiling of water in two rectangular channels with dimensions (width×depth) 2.0×4.0 mm2 and 0.5×2.0 mm2 (corresponding hydraulic diameters are 2.67 mm and 0.8 mm). The pressure at the test section exit is atmospheric. For steady-state experimental conditions the effects of heat flux, mass flux and inlet subcooling on the boiling heat transfer coefficient and the pressure drop are investigated. Flow patterns and the transition of flow patterns along the channel axis are visualized and documented with a video-camera. Bubbly flow, slug flow and annular flow are distinguished in both channels. Preliminary flow pattern maps are generated.


Author(s):  
T. Netz ◽  
R. Shalem ◽  
J. Aharon ◽  
G. Ziskind ◽  
R. Letan

In the present study, incipient flow boiling of water is studied experimentally in a square-cross-section vertical channel. Water, preheated to 60–80 degrees Celsius, flows upwards. The channel has an electrically heated wall, where the heat fluxes can be as high as above one megawatt per square meter. The experiment is repeated for different water flow rates, and the maximum Reynolds number reached in the present study is 27,300. Boiling is observed and recorded using a high-speed digital video camera. The temperature field on the heated surface is measured with an infrared camera and a software is used to obtain quantitative temperature data. Thus, the recorded boiling images are analyzed in conjunction with the detailed temperature field. The dependence of incipient boiling on the flow and heat transfer parameters is established. For a flat wall, the results for various velocities and subcooling conditions agree well with the existing literature. Furthermore, three different wavy heated surfaces are explored, having the same pitch of 4mm but different amplitudes of 0.25mm, 0.5mm and 0.75mm. The effect of surface waviness on single-phase heat transfer and boiling incipience is shown. The differences in boiling incipience on various surfaces are elucidated, and the effect of wave amplitude on the results is discussed.


Sign in / Sign up

Export Citation Format

Share Document