Secondary Flow Effects in High Tip Speed Free Convection

1987 ◽  
Vol 109 (1) ◽  
pp. 97-103 ◽  
Author(s):  
P. W. Eckels ◽  
J. H. Parker ◽  
A. Patterson

Experimental analyses of the effects of secondary flows on heat transfer in high tip speed rotating apparatus are not readily available. This paper provides data on the heat transfer within two different test modules which were rotated at high speed with the heat transfer surfaces perpendicular and parallel to the Coriolis acceleration. One module contained a heated wall and another a parallel plate free convection experiment. Uniform heat fluxes were maintained. Rayleigh numbers in excess of 1015 were achieved with liquid helium as the transfer medium. Some of the findings are that secondary flows can reduce heat transfer by as much as 60 percent in single-phase heat transfer, the transitions to fully turbulent flow are in agreement with existing prediction methods, the critical heat flux in two-phase flow boiling is significantly increased, forced convection correlations underpredict single-phase thermosyphon performance, and the usual nondimensional parameters of free convection establish similitude between various fluids and speeds. These results suggest that techniques used to enhance heat transfer in the rotating frame should be verified by tests in the rotating frame.

Author(s):  
T. Netz ◽  
R. Shalem ◽  
J. Aharon ◽  
G. Ziskind ◽  
R. Letan

In the present study, incipient flow boiling of water is studied experimentally in a square-cross-section vertical channel. Water, preheated to 60–80 degrees Celsius, flows upwards. The channel has an electrically heated wall, where the heat fluxes can be as high as above one megawatt per square meter. The experiment is repeated for different water flow rates, and the maximum Reynolds number reached in the present study is 27,300. Boiling is observed and recorded using a high-speed digital video camera. The temperature field on the heated surface is measured with an infrared camera and a software is used to obtain quantitative temperature data. Thus, the recorded boiling images are analyzed in conjunction with the detailed temperature field. The dependence of incipient boiling on the flow and heat transfer parameters is established. For a flat wall, the results for various velocities and subcooling conditions agree well with the existing literature. Furthermore, three different wavy heated surfaces are explored, having the same pitch of 4mm but different amplitudes of 0.25mm, 0.5mm and 0.75mm. The effect of surface waviness on single-phase heat transfer and boiling incipience is shown. The differences in boiling incipience on various surfaces are elucidated, and the effect of wave amplitude on the results is discussed.


2001 ◽  
Author(s):  
G. Hetsroni ◽  
A. Mosyak ◽  
Z. Segal

Abstract Experimental investigation of a heat sink for electronics cooling is performed. The objective is to keep the operating temperature at a relatively low level of about 323–333K, while reducing the undesired temperature variation in both the streamwise and transverse directions. The experimental study is based on systematic temperature, flow and pressure measurements, infrared radiometry and high-speed digital video imaging. The heat sink has parallel triangular microchannels with a base of 250μm. According to the objectives of the present study, Vertrel XF is chosen as the working fluid. Experiments on flow boiling of Vertrel XF in the microchannel heat sink are performed to study the effect of mass velocity and vapor quality on the heat transfer, as well as to compare the two-phase results to a single-phase water flow.


1999 ◽  
Author(s):  
Yury F. Gortyshov ◽  
Igor A. Popov ◽  
Konstantin E. Gulitsky

Abstract In this paper we consider experimental studies of hydraulic resistance, surface heat transfer, internal heat exchange and critical heat fluxes for the flow of single-phase and boiling working fluids in channels with high-porous inserts. Experiments were carried out with more than 40 samples of high-porous cellular materials with the porosity 0.8...0.98 and mean pore diameter 0.62...4 mm and with more than 10 samples of regular porous inserts and porosity ε = 0.512...0.86 and mean pore diameter 1.5...3.5 mm. These samples were made of porcelain, invar, nichrome, bronze and copper.


Author(s):  
M. W. Alnaser ◽  
K. Spindler ◽  
H. Mu¨ller-Steinhagen

A test rig was constructed to investigate flow boiling in an electrically heated horizontal mini-channel array. The test section is made of copper and consists of twelve parallel mini-channels. The channels are 1 mm deep, 1 mm wide and 250 mm long. The test section is heated from underneath with six cartridge heaters. The channels are covered with a glass plate to allow visual observations of the flow patterns using a high-speed video-camera. The wall temperatures are measured at five positions along the channel axis with two resistance thermometers in a specified distance in heat flow direction. Local heat transfer coefficients are obtained by calculating the local heat flux. The working fluids are deionised water and ethanol. The experiments were performed under near atmospheric pressure (0.94 bar to 1.2 bar absolute). The inlet temperature was kept constant at 20°C. The measurements were taken for three mass fluxes (120; 150; 185 kg/m2s) at heat fluxes from 7 to 375 kW/m2. Heat transfer coefficients are presented for single phase forced convection, subcooled and saturated flow boiling conditions. The heat transfer coefficient increases slightly with rising heat flux for single phase flow. A strong increase is observed in subcooled flow boiling. At high heat flux the heat transfer coefficient decreases slightly with increasing heat flux. The application of ethanol instead of water leads to an increase of the surface temperature. At the same low heat flux flow boiling heat transfer occurs with ethanol, but in the experiments with water single phase heat transfer is still dominant. It is because of the lower specific heat capacity of ethanol compared to water. There is a slight influence of the mass flux in the investigated parameter range. The pictures of a high-speed video-camera are analysed for the two-phase flow-pattern identification.


Author(s):  
S. E. Tarasevich ◽  
A. B. Yakovlev

In paper the experimental results on a heat transfer in annular channels with continuous twisting at length at one- and two-phase flows are observed. For a flow twisting the wire was spirally coiled on the central body of the annular channel (diameter of a wire is equal to annular gap altitude). Results of experimental data of a heat transfer of authors and various researchers at a single phase flow in annular channels with a continuous twisting are analyzed. Sampling of diagnostic variables (equivalent diameter and velocity) is spent and generalizing associations for heat transfer calculation on the concave and convex surfaces in a single-phase phase are offered. Also the technique of definition of temperature of the subcooled flow boiling beginning on surfaces of annular channels with a twisting is offered. Features of boiling, origination of heat transfer crisis and results of visualization of a two-phase flow structure in annular channels with twisting are described.


Author(s):  
Junye Li ◽  
Kan Zhou ◽  
Wei Li

Abstract An experimental investigation of subcooled flow boiling in a large width-to-height-ratio, one-sided heating rectangular mini-gap channel was conducted with deionized water as the working fluid. The super-hydrophobicity micro-porous structured copper surface was utilized in the experiments. High speed flow visualization was conducted to illustrate the effects of heat flux and mass rate on the heat transfer coefficient and flow pattern on the surfaces. The mass fluxes were in the range of 200–500 kg/m2s, the wall heat fluxes were spanned from 40–400 kW/m2. With increments of imposed heat flux, the slopes of boiling curves for superhydrophobic micro-porous copper surfaces increased rapidly, indicating the Onset of Nucleate Boiling. Heat transfer characteristics were discussed with variation of heat fluxes and mass fluxes, the trends of which were analyzed with the aid of high speed flow visualization.


Author(s):  
Manoj Kumar Moharana ◽  
Rohan M. Nemade ◽  
Sameer Khandekar

Hydrogen fuel from renewable bio-ethanol is a potentially strong contender as an energy carrier. Its distributed production by steam reforming of ethanol on microscale platforms is an efficient upcoming method. Such systems require (a) a pre-heater for liquid to vapor conversion of ethanol water mixtures (b) a gas-phase catalytic reactor. We focus on the fundamental experimental heat transfer studies (pool and flow boiling of ethanol-water mixtures) required for the primary pre-heater boiler design. Flow boiling results (in a 256 μm square channel) clearly show the influence of mixture composition. Heat transfer coefficient remains almost constant in the single-phase region and rapidly increases as the two-phase region starts. On further increasing the wall superheat, heat transfer starts to decrease. At higher applied heat flux, the channel is subjected to axial back conduction from the single-phase vapor region to the two-phase liquid-vapor region, thus raising local wall temperatures. Simultaneously, to gain understanding of phase-change mechanisms in binary mixtures and to generate data for the modeling of flow boiling process, pool-boiling of ethanol-water mixtures has also been initiated. After benchmarking the setup against pure fluids, variation of heat transfer coefficient, bubble growth, contact angles, are compared at different operating conditions. Results show strong degradation in heat transfer in mixtures, which increases with operating temperature.


1999 ◽  
Vol 121 (1) ◽  
pp. 89-101 ◽  
Author(s):  
O. Zu¨rcher ◽  
J. R. Thome ◽  
D. Favrat

Experimental test results for flow boiling of pure ammonia inside horizontal tubes were obtained for a plain stainless steel tube. Tests were run at a nominal saturation temperature of 4°C, nine mass velocities from 20–140 kg/m2 s, vapor qualities from 1–99 percent and heat fluxes from 5–58 kW/m2. Two-phase flow observations showed that the current test data covered the following regimes: fully stratified, stratified-wavy, intermittent, annular, and annular with partial dryout. The Kattan-Thome-Favrat flow boiling model accurately predicted the local heat transfer coefficients measured in all these flow regimes with only two small modifications to their flow map (to extend its application to G < 100 kg/m2 s). Their flow boiling model was also successfully compared to the earlier ammonia flow boiling data of Chaddock and Buzzard (1986). The Gungor-Winterton (1987) correlation instead gave very poor accuracy for ammonia.


Author(s):  
Dae W. Kim ◽  
Emil Rahim ◽  
Avram Bar-Cohen ◽  
Bongtae Han

The thermofluid characteristics of a chip-scale microgap cooler, including single-phase flow of water and FC-72 and flow boiling of FC-72, are explored. Heat transfer and pressure drop results for single phase water are used to validate a detailed numerical model and, together with the convective FC-72 data, establish a baseline for microgap cooler performance. Experimental results for single phase water and FC-72 flowing in 120 μm, 260 μm and 600 μm microgap coolers, 31mm wide by 34mm long, at velocities of 0.1 – 2 m/s are reported. “Pseudo-boiling” driven by dissolved gas and flow boiling of FC-72 are found to provide significant enhancement in heat transfer relative to theoretical single phase values.


Author(s):  
Jessica Sheehan ◽  
Avram Bar-Cohen

IR thermography of the heated wall for the two-phase flow of FC-72 in microgap channels provides explicit evidence of the quality-driven M-shaped variations in the two-phase microgap heat transfer coefficients. Data obtained from a 210μ microgap channel, operated with an FC-72 mass flux of 195 and 780 kg/m2-s and asymmetric heat fluxes of 28 W/cm2 to 35 W/cm2 are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document