Transient Axial Free Jet Impinging Over a Flat Uniformly Heated Disk: Solid–Fluid Properties Effects

2000 ◽  
Author(s):  
Antonio J. Bula ◽  
Muhammad M. Rahman ◽  
John E. Leland

Abstract Transient conjugate heat transfer process during axial free jet impingement on a solid disk of finite thickness was considered. As the fluid reached steady state, power was turned on and a uniform heat flux was imposed on the disk at its opposite surface. The numerical model considered both solid and fluid regions. Equations for conservation of mass, momentum, and energy were solved in the liquid region taking into account the transport processes at the inlet and exit boundaries, as well as at the solid-liquid and liquid-gas interfaces. Inside the solid, only the heat conduction equation was solved. The shape and location of the free surface (liquid-gas interface) was determined iteratively as a part of the solution process by satisfying the kinematic condition as well as the balance of normal and shear forces at this interface. A non-uniform grid distribution, captured from a systematic grid-independence study, was used to adequately accommodate large variations near the solid-fluid interface. Computed results include the simulation of six different substrate materials namely, aluminum, constantan, copper, diamond, silicon, and silver, and three different impinging liquids, FC - 77, Mil - 7808, and water. The solids and fluids selected covered a wide range of possibilities of conjugate heat transfer phenomena. The analysis performed showed that the thermal storage capacity, defined as density times specific heat, is an important factor defining which material will attain steady state faster during conjugate heat transfer process, like the thermal diffusivity does it for pure conduction heat transfer.

Author(s):  
S. R. Darr ◽  
J. Dong ◽  
N. Glikin ◽  
J. W. Hartwig ◽  
J. N. Chung

In many convective liquid–vapor phase-change heat transfer engineering applications, cryogenic fluids are widely used in industrial processes, spacecraft and cryosurgery systems, and so on. For example, cryogens are usually used as liquid fuels such as liquid hydrogen, liquid methane, and liquid oxygen in the rocket industry, liquid nitrogen and helium are frequently used to cool superconducting magnetic device for medical applications. In these systems, proper transport, handling, and storage of cryogenic fluids are of extreme importance. Among all the cryogenic transport processes performed in room temperatures, quenching, also termed chilldown, is an unavoidable initial, transient phase-change heat transfer process that brings the system down to the cryogenic condition. The Leidenfrost temperature or rewet temperature that signals the end of film boiling is practically considered the completion point of a quenching process. Therefore, rewet temperature has been considered the most important parameter for the engineering design of cryogenic thermal management systems. As most of the previous correlations for predicting the Leidenfrost temperature and the rewet temperature have been developed for water, they are shown to disagree with recent liquid nitrogen pipe chilldown experiments in upward and downward flow directions over a wide range of flow rates, pressures, and degrees of inlet subcooling. In addition to a complete review of the literature, two modified correlations are presented, one based on bubble growth and another based on the theoretical maximum limit of superheat. Each correlation performs well over the entire dataset.


2011 ◽  
Vol 60 (1) ◽  
pp. 18-33 ◽  
Author(s):  
Jean F. B. Machado ◽  
Cezar O. R. Negrão ◽  
Silvio L. M. Junqueira ◽  
Rigoberto E. M. Morales ◽  
José L. Lage

Author(s):  
Antonio J. Bula ◽  
Muhammad M. Rahman

The results of numerical simulation of a transient heat transfer process when a free jet of high Prandtl number fluid impinges perpendicularly on a solid substrate of finite thickness containing discrete electronics on the opposite surface are presented. The numerical model was developed considering both solid and fluid regions and solved as a conjugate problem. Equations for the conservation of mass, momentum, and energy were solved in the liquid region taking into account the transport processes at the inlet and exit boundaries as well as at the solid-liquid and liquid-gas interfaces. In the solid region, only heat conduction equation was solved. The shape and location of the free surface (liquid-gas interface) was determined iteratively as a part of the solution process by satisfying the kinematic condition as well as the balance of normal and shear forces at this interface. The number of elements in the fluid and solid regions were determined from a systematic grid-independence study. A non-uniform grid distribution was used to adequately capture large variations near the solid-fluid interface. Computed results included the local and average heat transfer coefficients at the solid-fluid interface. Computations were carried out to investigate the influence of different operating parameters such as jet velocity and plate material. It was found that the average heat transfer coefficient is maximum at early stages of the transient process and decreases gradually with time to the final steady state condition.


2021 ◽  
Author(s):  
Feng Xu ◽  
Qiusheng Liu ◽  
Makoto Shibahara

Abstract The high heat load on the first wall of the helium cooled blanket is removed by tube flow of helium gas. Heat transfer augmentation is considered to be acquired by downsizing of channels. Therefore, this paper experimentally studied the influence of inner diameter on the heat transfer performance of helium gas flowing in a minichannel. The helium gas flowed in the small platinum tubes with the inner diameters of 0.8 mm and 1.8 mm, respectively. The heat generation rate of the tube was controlled by a heat input subsystem and raised with an exponential equation. The surface temperature and heat flux of the tubes were obtained under a wide range of e-folding time at different flow velocities. The heat transfer coefficients of different inner diameter tubes were compared at the same conditions. The heat transfer performance of the 0.8 mm-diameter tube was compared with a classical correlation. The experimental results showed that the heat transfer performance in the minichannel is better than a conventional large-diameter tube. The heat transfer coefficients of the 0.8 mm-diameter tube were higher than those of the 1.8 mm-diameter tube. The heat transfer process was enhanced with reducing the inner diameter of the minichannel. The heat transfer process was divided into two parts including transient and quasi-steady-state regions.


1989 ◽  
Vol 111 (2) ◽  
pp. 416-424 ◽  
Author(s):  
C. Beckermann ◽  
R. Viskanta

A combined experimental and numerical study is reported of melting of a pure metal inside a vertical rectangular enclosure with natural convection in the liquid and conduction in the solid. The numerical model is successfully verified by conducting a series of experiments covering a wide range of hot and cold wall temperatures. It is found that solid subcooling significantly reduces the melting rate when compared to melting with the solid at the fusion temperature. Because the cooled wall is held below the fusion temperature of the metal, the solid/liquid interface eventually reaches a stationary position. For moderate values of the subcooling parameter the steady-state interface is almost vertical and parallel to the cold wall. Strong subcooling results in an early termination of the melting process, such that natural convection in the relatively small liquid region cannot fully develop. For moderate subcooling, correlations have been derived for the steady-state volume and heat transfer rates. While many aspects of melting with solid subcooling appear to be similar to ordinary nonmetallic solids, important differences in the local flow structures and heat transfer mechanisms are observed.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1643
Author(s):  
Claudio Giorgi ◽  
Federico Zullo

We present a novel indicator for the effectiveness of longitudinal, convecting-radiating fins to dissipate heat. Starting from an analysis of the properties of the entropy rate of the steady state, we show how it is possible to assess the efficiency of such devices by looking at the amount of entropy produced in the heat transfer process. Our study concerns both purely convective fins and convection-radiant fins and takes advantage of explicit expressions for the distribution of heat along the fin. It is shown that, in a suitable limit, the standard definition of efficiency and the entropic definition coincide. The role of the fluid temperature is explicit in the new definition and in the purely convective case. An application to an aluminium fin is given. Analytical and numerical results are discussed.


Sign in / Sign up

Export Citation Format

Share Document