scholarly journals Entropy Rates and Efficiency of Convecting-Radiating Fins

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1643
Author(s):  
Claudio Giorgi ◽  
Federico Zullo

We present a novel indicator for the effectiveness of longitudinal, convecting-radiating fins to dissipate heat. Starting from an analysis of the properties of the entropy rate of the steady state, we show how it is possible to assess the efficiency of such devices by looking at the amount of entropy produced in the heat transfer process. Our study concerns both purely convective fins and convection-radiant fins and takes advantage of explicit expressions for the distribution of heat along the fin. It is shown that, in a suitable limit, the standard definition of efficiency and the entropic definition coincide. The role of the fluid temperature is explicit in the new definition and in the purely convective case. An application to an aluminium fin is given. Analytical and numerical results are discussed.

2000 ◽  
Author(s):  
Antonio J. Bula ◽  
Muhammad M. Rahman ◽  
John E. Leland

Abstract Transient conjugate heat transfer process during axial free jet impingement on a solid disk of finite thickness was considered. As the fluid reached steady state, power was turned on and a uniform heat flux was imposed on the disk at its opposite surface. The numerical model considered both solid and fluid regions. Equations for conservation of mass, momentum, and energy were solved in the liquid region taking into account the transport processes at the inlet and exit boundaries, as well as at the solid-liquid and liquid-gas interfaces. Inside the solid, only the heat conduction equation was solved. The shape and location of the free surface (liquid-gas interface) was determined iteratively as a part of the solution process by satisfying the kinematic condition as well as the balance of normal and shear forces at this interface. A non-uniform grid distribution, captured from a systematic grid-independence study, was used to adequately accommodate large variations near the solid-fluid interface. Computed results include the simulation of six different substrate materials namely, aluminum, constantan, copper, diamond, silicon, and silver, and three different impinging liquids, FC - 77, Mil - 7808, and water. The solids and fluids selected covered a wide range of possibilities of conjugate heat transfer phenomena. The analysis performed showed that the thermal storage capacity, defined as density times specific heat, is an important factor defining which material will attain steady state faster during conjugate heat transfer process, like the thermal diffusivity does it for pure conduction heat transfer.


Author(s):  
O S Sogut ◽  
A Durmayaz

An optimal performance analysis of a parabolic-trough direct-steam-generation solar-driven Rankine cycle power plant at maximum power (MP) and under maximum power density (MPD) conditions is performed numerically to investigate the effects of heat loss from the heat source and working fluid. In this study, the ideal Rankine cycle of the solar-driven power plant is modified into an equivalent Carnot-like cycle with a finite-rate heat transfer. The main assumptions of this study include that: (a) the parabolic collector is the thermal reservoir at a high temperature, (b) the heat transfer process between the collector and the working fluid is through either radiation and convection simultaneously or radiation only, and (c) the heat transfer process from the working fluid to the low-temperature thermal reservoir is convection dominated. Comprehensive discussions on the effect of heat loss during the heat transfer process from the hot thermal reservoir to the working fluid in the parabolic-trough solar collector are provided. The major results of this study can be summarized as follows: (a) the working fluid temperature at the hot-side heat exchanger decreases remarkably whereas the working fluid temperature at the cold-side heat exchanger does not show any significant change with increasing heat loss, (b) the MP, MPD, and thermal efficiencies decrease with increasing heat loss, and (c) the effect of heat loss on the decrease of thermal efficiency increases when convection is the dominant heat transfer mode at the hot-side heat exchanger.


2014 ◽  
Vol 496-500 ◽  
pp. 1084-1087
Author(s):  
Luo Wei ◽  
Rui Quan Liao ◽  
Yong Li ◽  
Jian Wu

In light of the difficulty including the complicacy of heat transfer process with hot natural gas injected in gas lift annulus, regular temperature prediction methods are commonly used to consider the tubing fluid temperature for the heat transfer from tubing to annulus, actually the tubing fluid will not be the external heat transfer but it will be heated by annulus when the gas temperature in annulus is higher than the tubing fluid temperature, as well as especially the prediction of tubing wellhead temperature in terms of fluid temperature distribution traits in annulus and tubing, regular temperature prediction methods manifest limitation due to their applicability. Based on the fairly comprehensive tubing fluid temperature distribution prediction model with consideration of Thomson effect and such factors as kinetic energy, annular convection heat transfer and phase change etc. developed by the predecessors, and according to the basic principle of conservation of energy and heat transfer, the actual heat transfer process with hot natural gas injected in gas lift annulus was considered as a plus in this paper. The models for actual heat transfer and tubing fluid modified temperature prediction were established and eventually, the models were verified via multiple field tests. The reliability, capable of satisfying the requirements of engineering precision, in terms of temperature distribution of model prediction was proved.


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


2003 ◽  
Author(s):  
B. X. Wang ◽  
H. Li ◽  
X. F. Peng ◽  
L. X. Yang

The development of a numerical model for analyzing the effect of the nano-particles’ Brownian motion on the heat transfer is described. By using the Maxwell velocity distribution relations to calculate the most possible velocity of fluid molecules at certain temperature gradient location around the nano-particle, the interaction between fluid molecules and one single nano-particle is analyzed and calculated. Based on this, a syntonic system is proposed and the coupled effect that Brownian motion of nano-particles has on fluid molecules is simulated. This is used to formulate a reasonable analytic method, facilitating laboratory study. The results provide the essential features of the heat transfer process, contributed by micro-convection to be considered.


2011 ◽  
Vol 393-395 ◽  
pp. 412-415
Author(s):  
Jian Hua Zhong ◽  
Li Ming Jiang ◽  
Kai Feng

In this article, finned copper tube used in the central air conditioning was acted as the discussed object. According to the combination with actual processing and theoretical calculations, Five finned tube was selected with typical structural parameters, and established their entity model using Pro/E, then the heat transfer process of finned tube was simulated through the ANSYS, the effect of the fin height, fin thickness and other structure parameters to the heat transfer enhancement of finned tube was researched. Meantime the efficiency of the heat transfer under different convection heat transfer coefficient was also studied.


Sign in / Sign up

Export Citation Format

Share Document