Hydraulic Emulation of Injection Moulding

Author(s):  
Paul K. Guerrier ◽  
Kevin A. Edge

Abstract The control of injection moulding is an active area for research. The inject phase of the moulding process which includes filling and packing is of particular importance. New control strategies have traditionally been evaluated either in simulation or through full scale testing. Both methods have advantages and disadvantages. This paper details the hydraulic load emulation of the filling and packing phases using the hardware-in-the-loop technique which is a compromise between these two methods. With suitable controller design successful load emulation is demonstrated.

1999 ◽  
Author(s):  
Paul K. Guerrier ◽  
Kevin A. Edge

Abstract In the development of advanced injection controllers and more effective control valves, full scale testing is often too expensive. This paper is concerned with virtual testing using simulation and experimental testing using a ‘hardware-in-the-loop’ technique in which a servovalve-actuator system emulates the moulding process. Simulation results for the purely simulated load and a ‘hardware-in-the-loop’ emulated load are compared with experimental data. Good agreement is achieved. Although the particular case of an hydraulic injection moulding machine has been considered, the model of the moulding process would be equally valid for studies of an all-electric machine.


2020 ◽  
Author(s):  
Júnio E. de Morais ◽  
Daniel Neri ◽  
Guilherme V. Raffo

This work presents two control strategies based on a classic nonlinear H infinity controller and on a novel nonlinear W infinity controller for robust trajectory tracking of an unmanned aerial manipulator (UAM). The controllers are implemented in a hardware-in-the-loop (HIL) framework using the ProVANT simulator, which was developed on the Gazebo and Robot Operating System (ROS) platforms. In addition, the performance of these controllers is compared in order to highlight their advantages and disadvantages.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 593
Author(s):  
Moiz Muhammad ◽  
Holger Behrends ◽  
Stefan Geißendörfer ◽  
Karsten von Maydell ◽  
Carsten Agert

With increasing changes in the contemporary energy system, it becomes essential to test the autonomous control strategies for distributed energy resources in a controlled environment to investigate power grid stability. Power hardware-in-the-loop (PHIL) concept is an efficient approach for such evaluations in which a virtually simulated power grid is interfaced to a real hardware device. This strongly coupled software-hardware system introduces obstacles that need attention for smooth operation of the laboratory setup to validate robust control algorithms for decentralized grids. This paper presents a novel methodology and its implementation to develop a test-bench for a real-time PHIL simulation of a typical power distribution grid to study the dynamic behavior of the real power components in connection with the simulated grid. The application of hybrid simulation in a single software environment is realized to model the power grid which obviates the need to simulate the complete grid with a lower discretized sample-time. As an outcome, an environment is established interconnecting the virtual model to the real-world devices. The inaccuracies linked to the power components are examined at length and consequently a suitable compensation strategy is devised to improve the performance of the hardware under test (HUT). Finally, the compensation strategy is also validated through a simulation scenario.


Author(s):  
Young Joo Shin ◽  
Peter H. Meckl

Benchmark problems have been used to evaluate the performance of a variety of robust control design methodologies by many control engineers over the past 2 decades. A benchmark is a simple but meaningful problem to highlight the advantages and disadvantages of different control strategies. This paper verifies the performance of a new control strategy, which is called combined feedforward and feedback control with shaped input (CFFS), through a benchmark problem applied to a two-mass-spring system. CFFS, which consists of feedback and feedforward controllers and shaped input, can achieve high performance with a simple controller design. This control strategy has several unique characteristics. First, the shaped input is designed to extract energy from the flexible modes, which means that a simpler feedback control design based on a rigid-body model can be used. In addition, only a single frequency must be attenuated to reduce residual vibration of both masses. Second, only the dynamics between control force and the first mass need to be considered in designing both feedback and feedforward controllers. The proposed control strategy is applied to a benchmark problem and its performance is compared with that obtained using two alternative control strategies.


2014 ◽  
Vol 568-570 ◽  
pp. 1031-1035
Author(s):  
Ju Tian ◽  
Yao Chen

The electro-hydraulic load simulator is an important equipment for aircraft hardware-in-the-loop simulation. An adaptive PID control method for compensating extraneous torque with simple structure and easy to implement is proposed according to the variation characteristics of load gradient in the load simulator. The control parameter tuning method is also given.


2013 ◽  
Vol 747 ◽  
pp. 571-574 ◽  
Author(s):  
Zulkifli Mohamad Ariff ◽  
T.H. Khang

The possibility of using Cadmould software to simulate the filling behaviour of a natural rubber compound during an injection moulding process was investigated. For the simulation process, the determination of required material input data involving the rheological and cure kinetics data of the designed rubber compound were conducted. It was discovered that the acquired data were able to function as reliable material input data as they were comparable with related data available in the Cadmould software materials database. Verification of the simulated filling profiles by experimental short shots specimens showed that the Cadmould Rubber Package was able to predict the realistic filling behaviour of the formulated natural rubber compound inside the mould cavity when the measured material data were utilized. Whereas, the usage of available material database from the software failed to model the mould filling progression of the intended natural rubber compound.


Sign in / Sign up

Export Citation Format

Share Document