A New LES Pool Fire Simulation Tool

Author(s):  
Rajesh Rawat ◽  
Jennifer P. Spinti ◽  
Wing Yee ◽  
Philip J. Smith

Abstract In a large-scale pool fire simulation, the processes that must be modeled are complex and coupled. The flow is often highly turbulent, dynamic vortical structures are present, the chemical reactions involve several thousand elementary steps and hundreds of species/intermediates, and radiation, the dominant mode of heat transfer, is strongly affected by the presence of soot. The range of length and time scales associated with all these processes cannot be simulated on even the most powerful supercomputers available today. Our approach to making this intractable problem tractable has been twofold: one, to improve the models used at all levels in the simulation (i.e., transport models and subgrid scale models) and two, to parallelize the simulation tool to run on massively parallel machines. We have employed Large Eddy Simulation (LES) to model the fluid dynamics and the convection-diffusion scalar transport. LES successfully captures the transient nature of the coherent vortical structures present in a pool fire. We have integrated these improved models into a computational framework that provides support for parallelization. Preliminary validation results show the capability of the fire simulation tool to capture the puffing nature of pool fires. In addition, scalability studies of the simulation tool reveal close to linear scalability up to 500 processors.

Author(s):  
Lei Wang ◽  
Mirko Salewski ◽  
Bengt Sunde´n

Vortical motions, usually called sinews and muscles of fluid motions, constitute important features of turbulent flows and form the base for large-scale transport processes. In this study, we present a variety of flow decomposition techniques to identify and analyze the vortical structures in a ribbed channel. To this end, the instantaneous velocity fields are measured by means of a two-dimensional particle image velocimetry (PIV). Firstly, the implementation of Galilean-, Reynolds- and large-eddy simulation (LES) decompositions on the instantaneous flow fields allows one to perceive the coherent vortices embedded in the separated shear layer. In addition, the proper orthogonal decomposition (POD) is employed to extract the underlying flow features out of the fluctuating velocity and vorticity fields, respectively. For velocity-based decomposition, the first two POD modes show that the shear layer is highly unstable and associated with the ‘flapping’ motion. For vorticity-based decomposition, the first two POD modes are characterized by the distinct horizontal bands which manifest the coherent structures in the shear layer. In order to interpret the flow structures in a convenient way, a linear combination of POD modes (reconstruction) is also carried out in the present study. The result shows that a large-scale, pronounced vortex is recognizable in the region downstream of rib.


Author(s):  
Alexej Pogorelov ◽  
Matthias Meinke ◽  
Wolfgang Schröder

The flow field in a complete one-stage axial-flow turbine with 30 stator and 62 rotor blades is investigated by large-eddy simulation (LES). To solve the compressible Navier-Stokes equations, a massively parallelized finite-volume flow solver based on an efficient Cartesian cut-cell/level-set approach, which ensures a strict conservation of mass, momentum and energy, is used. This numerical method contains two adaptive Cartesian meshes, one mesh to track the embedded surface boundaries and a second mesh to resolve the fluid domain and to solve the conservation equations. The overall approach allows large scale simulations of turbomachinery applications with multiple relatively moving boundaries in a single frame of reference. The relative motion of the geometries is described by a kinematic motion level-set interface method. The focus of the numerical analysis is on the flow inside the cavity between the stator and the rotor disks. Full 360° computations of the turbine stage with a single lip rim seal geometry are conducted. First, the impact of the mesh resolution on the LES results is analyzed. Second, the LES results are compared to experimental data, followed by a detailed analysis of the flow field inside the rotor-stator wheel space. A dominant mode unrelated to the rotor frequency and its harmonics is identified, which shows a major impact on the ingress of the hot gas into the rotor-stator wheel space.


2005 ◽  
Vol 8 ◽  
pp. 963-974 ◽  
Author(s):  
S. Ferraris ◽  
J. Wen ◽  
S. Dembele

Author(s):  
C. Fureby

Present-day demands on combustion equipment are increasing the need for improved understanding and prediction of turbulent combustion. Large eddy simulation (LES), in which the large-scale flow is resolved on the grid, leaving only the small-scale flow to be modeled, provides a natural framework for combustion simulations as the transient nature of the flow is resolved. In most situations; however, the flame is thinner than the LES grid, and subgrid modeling is required to handle the turbulence-chemistry interaction. Here we examine the predictive capabilities between LES flamelet models, such as the flamelet progress variable (LES-FPV) model, and LES finite rate chemistry models, such as the thickened flame model (LES-TFM), the eddy dissipation concept (LES-EDC) model, and the partially stirred reactor model (LES-PaSR). The different models are here used to examine a swirl-stabilized premixed flame in a laboratory gas turbine combustor, featuring the triple annular research swirler (TARS), for which high-quality experimental data is available. The comparisons include velocity and temperature profiles as well as combustor dynamics and NO formation.


2021 ◽  
Vol 33 (8) ◽  
pp. 085109
Author(s):  
Stefan P. Domino ◽  
John Hewson ◽  
Robert Knaus ◽  
Mike Hansen

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4886 ◽  
Author(s):  
Yang Yang ◽  
Xiao Liu ◽  
Zhihao Zhang

The current work is focused on investigating the potential of data-driven post-processing techniques, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) for flame dynamics. Large-eddy simulation (LES) of a V-gutter premixed flame was performed with two Reynolds numbers. The flame transfer function (FTF) was calculated. The POD and DMD were used for the analysis of the flame structures, wake shedding frequency, etc. The results acquired by different methods were also compared. The FTF results indicate that the flames have proportional, inertial, and delay components. The POD method could capture the shedding wake motion and shear layer motion. The excited DMD modes corresponded to the shear layer flames’ swing and convect motions in certain directions. Both POD and DMD could help to identify the wake shedding frequency. However, this large-scale flame oscillation is not presented in the FTF results. The negative growth rates of the decomposed mode confirm that the shear layer stabilized flame was more stable than the flame possessing a wake instability. The corresponding combustor design could be guided by the above results.


Sign in / Sign up

Export Citation Format

Share Document