Steady and Transient Flow of a Non-Newtonian Chemically Reactive Fluid in a Twin-Screw Extruder

Author(s):  
W. Zhu ◽  
Y. Jaluria

Abstract The flow of chemically reactive non-Newtonian materials, such as bio-polymers and aciylates, in a fully intermeshing, co-rotating twin-screw extruder is numerically investigated. A detailed study of the system transient behavior is carried out. The main transient aspects, including response time, variation of system variables, and instability of operation, are studied for both single- and twin-screw extruders. The effect of a time-dependent variation in the boundary conditions is studied. The coupling due to conduction heat transfer in the screw barrel is found to be very important and is taken into account for single-screw extruders. In the absence of this conjugate coupling, the response time is much shorter. Several other interesting trends are obtained with respect to the dependence of the transient response on the fluid, materials, and operating conditions. Steady state results are obtained at large time. The calculated velocity distributions in the screw channel are compared with experimental results in the literature for steady state flow and good agreement has been obtained. The numerical results show that not all desired operating conditions are feasible. The calculated results for transient transport agree with the few experimental observations available on this system. These results will be useful in the design, control and optimization of polymer extrusion processes.

Author(s):  
Giorgia Tagliavini ◽  
Federico Solari ◽  
Roberto Montanari

AbstractThe extrusion of starch-based products has been a matter of interest, especially for the pasta and the snack food production. In recent years, twin-screw extruders for snack food have been studied from both structural and fluid dynamics viewpoints. This project started from the rheological characterization of a starch-based dough (corn 34 wt%, tapioca 32 wt%), comparing viscosity values acquired in laboratory with different theoretical models found in literature. A computational fluid dynamic (CFD) simulation recreating the simple case of a fluid flow between two parallel plates was carried out to validate the former comparison. After the rheological validation was completed, the second phase of this work covered a 3D CFD simulation of the first part of the twin-screw extruder (feeding zone). The objective was to find a suitable model for describing the dough rheological behavior and the operating conditions of a co-rotating intermeshing twin-screw extruder. Once the model would be defined, it would allow to investigate several working conditions and different screws geometries of the machine, predicting the evolution of the product rheological properties.


2017 ◽  
Vol 37 (8) ◽  
pp. 827-835
Author(s):  
Song Zhao ◽  
Baiping Xu ◽  
Liang He ◽  
Huiwen Yu ◽  
Shouzai Tan

Abstract A thorough study was carried out to investigate the priority of a novel co-rotating non-twin screw extruder (NTSE) over a traditional twin screw extruder (TSE) in the mixing process of halogen-free intumescent flame-retardant acrylonitrile-butadiene-styrene (ABS) composites. The homogeneity of the flame-retardant additives of the composites processed by NTSE and TSE under the same operating conditions was characterized by using mechanical performance properties, limiting oxygen index values, UL-94 tests, and thermogravimetric analysis. All the results suggested that NTSE could achieve better mixing of the flame-retardant additives in the polymer matrix than TSE, which was further clarified by the scanning electron microscope pictures.


2012 ◽  
Vol 40 ◽  
pp. 355-360 ◽  
Author(s):  
Jazia Sriti ◽  
Kamel Msaada ◽  
Thierry Talou ◽  
Mamadou Faye ◽  
Ika Amalia Kartika ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Sahrim Ahmad

Water absorption is a major concern for natural fibers as reinforcement in wood plastic composites (WPCs). This paper presents a study on the comparison analysis of water absorption between two types of twin-screw extruders, namely, counterrotating and corotating with presence of variable antioxidants content. Composites of mixed fibres between rice husk and saw dust with recycled high-density polyethylene (rHDPE) were prepared with two different extruder machines, namely, counterrotating and corotating twin screw, respectively. The contents of matrix (30 wt%) and fibres (62 wt%) were mixed with additives (8 wt%) and compounded using compounder before extruded using both of the machines. Samples were immersed in distilled water according to ASTM D 570-98. From the study, results indicated a significant difference among samples extruded by counterrotating and corotating twin-screw extruders. The counterrotating twin-screw extruder gives the smallest value of water absorption compared to corotating twin-screw extruder. This indicates that the types of screw play an important role in water uptake by improving the adhesion between natural fillers and the polymer matrix.


2011 ◽  
Vol 130-134 ◽  
pp. 2273-2279
Author(s):  
Chang Liang ◽  
Bing Luo ◽  
Kui Sheng Wang

In this study, heat transfer and melting process in a co-rotating twin screw extruder are studied based on two typical screw configurations, screw element and kneading blocks staggered 45°. In order to estimate the melting ability of two configurations quantitatively, FEM software, FLUENT is adopted to simulate the cases. It could be concluded that kneading blocks have higher temperature rise and more liquid fraction than screw element, and it takes less time and less distance for kneading blocks to finish melting. Simulation results also show that kneading blocks have more viscous dissipation than screw element. Therefore, we can come to the conclusion that the kneading blocks are more suitable for the melting zone of co-rotating twin screw extruders.


Sign in / Sign up

Export Citation Format

Share Document