Experimental Investigations of the Rubber-Asphalt Sliding Pair Dynamics

Author(s):  
Ante Bozˇic´ ◽  
Ivan Petrovic´ ◽  
Nedjeljko Peric´ ◽  
Jadranko Matusˇko

A laboratory model for experimental investigations of the rubber-asphalt sliding pair has been designed with the purpose of better understanding of dynamic behavior of the friction force in the contact patch between the car tire and the road. Its design is described and some experimental results are given. These results confirm that it is essential to use a dynamic friction model in order to describe friction force in contact between the car tire and the road. Moreover, they indicate that the existing dynamic friction models night be physically incorrect regarding the change of friction coefficient for an asperity bristle passing through the contact surface.

Author(s):  
Chao Xu ◽  
Dongwu Li ◽  
Muzio M. Gola ◽  
Chiara Gastaldi

In turbine blade systems, under-platform dampers are widely used to attenuate excessive resonant vibrations. Subjected to vibration excitation, the components with frictionally constrained interfaces can involve very complex contact kinematics induced by tangential and normal relative motions. To effectively calculate the dynamics of a blade-damper system, contact models which can accurately reproduce the interface normal and tangential motions are required. The large majority of works have been developed using macroslip friction models to model the friction damping at the contact interface. However, for those cases with small tangential displacement where high normal loads are applied, macroslip models are not enough to give accurate results. In this paper two recently published microslip models are compared, between them and against the simple macroslip spring-slider model. The aim is to find to which extent these models can accurately predict damper mechanics. One model is the so called GG array, where an array of macroslip elements is used. Each macroslip element of the GG array is assigned its own contact parameters and for each of them four parameters are needed: normal stiffness, tangential stiffness, normal gap and friction coefficient. The other one is a novel continuous microslip friction model. The model is based on a modification of the original classic IWAN model to couple normal and tangential contact loads. Like the GG array the model needs normal and tangential stiffness, and friction coefficient. Unlike the GG array the model is continuous and, instead of the normal gap required by the GG array, the Modified IWAN model needs a preload value. The two models are here applied to the study of the mechanics of a laboratory under-platform damper test rig. The results from the two models are compared and allow their difference, both for damper mechanics and for the complex-spring coefficients, to be assessed.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Abdallah Hadji ◽  
Njuki Mureithi

A hybrid friction model was recently developed by Azizian and Mureithi (2013) to simulate the friction behavior of tube-support interaction. However, identification and validation of the model parameters remains unresolved. In previous work, the friction model parameters were identified using the reverse harmonic method, where the following quantities were indirectly obtained by measuring the vibration response of a beam: friction force, sliding speed of the force of impact, and local displacement at the contact point. In the present work, the numerical simulation by the finite element method (FEM) of a beam clamped at one end and simply supported with the consideration of friction effect at the other is conducted. This beam is used to validate the inverse harmonic balance method and the parameters of the friction models identified previously. Two static friction models (the Coulomb model and Stribeck model) are tested. The two models produce friction forces of the correct order of magnitude compared to the friction force calculated using the inverse harmonic balance method. However, the models cannot accurately reproduce the beam response; the Stribeck friction model is shown to give the response closest to experiments. The results demonstrate some of the challenges associated with accurate friction model parameter identification using the inverse harmonic balance method. The present work is an intermediate step toward identification of the hybrid friction model parameters and, longer-term, improved analysis of tube-support dynamic behavior under the influence of friction.


2018 ◽  
Vol 12 (4) ◽  
pp. 603-610 ◽  
Author(s):  
Yue Sun ◽  
Keita Shimada ◽  
Shaolin Xu ◽  
Masayoshi Mizutani ◽  
Tsunemoto Kuriyagawa ◽  
...  

Experimental investigations were carried out to verify if the friction reduction in lubrication can be expanded by a textured surface with sawtooth riblets. Sawtooth riblets were formed by ultraprecision diamond cutting, with a ridge angle of about 60°–90° and height of about 20–50 μm on the contact surface. Six types of textured surfaces with different ridge angles, heights, and sliding directions were tested and compared with the untextured surface. The tribological tests were conducted by a flat-on-flat tribometer in lubrication. The effects of the ridge angle, height, and relative sliding direction on the friction coefficient in lubrication were reported.


Author(s):  
Xi Shi ◽  
Andreas A. Polycarpou

As the size of contacting and sliding tribosystems decrease, intermolecular or adhesive forces become significant partly due to nanometer size surface roughness. The presence of adhesion has a major influence on the interfacial contact and friction forces as well as the microtribosystem dynamics and thus influences the overall dynamic friction behavior. In this paper, a dynamic friction model that explicitly includes adhesion, interfacial damping and the system dynamics for realistic rough surfaces was developed. The results show that the amplitude and mean value of the time varying normal contact and friction forces increase in the presence of adhesion under continuous contact conditions. Also, due to the attractive nature of adhesion, its presence delays or eliminates the occurrence of loss of contact. Furthermore, in the presence of significant adhesion, dynamic friction behavior is significantly more complicated compared to the no adhesion case, and the dynamic friction coefficient predictions may be misleading. Thus, it is more appropriate to discuss dynamic friction force instead of dynamic friction coefficient under dynamic conditions.


Author(s):  
Andris Martinovs ◽  
Vladimir Gonca

Paper analyses the sliding friction coefficient of rubber on concrete, timber and ceramic tile surfaces depending on the weight of the sliding object and contact surface area. It has been established that increase in the weight of the object makes sliding friction coefficient to grow. In the case of increase in size of contact area, sliding friction coefficient between rubber and concrete also increases, but it decreases between rubber- timber and rubber- tile. The mathematical model for description of sliding friction process has been developed which can be used to determine optimal surface area and a pattern as well as optimal weight of the sliding object in order to provide sufficient sliding friction. Model has five independent constants. It includes the contact surface area, the weight and the velocity of the sliding object, sliding friction coefficient, temperature and time.


Friction ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 768-783 ◽  
Author(s):  
Shingo Ozaki ◽  
Takeru Matsuura ◽  
Satoru Maegawa

AbstractAdhesion is one of essences with respect to rubber friction because the magnitude of the friction force is closely related to the magnitude of adhesion on a real contact area. However, the real contact area during sliding depends on the state and history of the contact surface. Therefore, the friction force occasionally exhibits rate-, state-, and pressure dependency. In this study, to rationally describe friction and simulate boundary value problems, a rate-, state-, and pressure-dependent friction model based on the elastoplastic theory was formulated. First, the evolution law for the friction coefficient was prescribed. Next, a nonlinear sliding surface (frictional criterion) was adopted, and several other evolution laws for internal state variables were prescribed. Subsequently, the typical response characteristics of the proposed friction model were demonstrated, and its validity was verified by comparing the obtained results with those of experiments conducted considering the contact surface between a rough rubber hemisphere and smooth acrylic plate.


Author(s):  
Andreas Goedecke ◽  
Randolf Mock

We present a novel approach for the simulation of dynamic friction in engineering systems, based on a new surface asperity model including creep effects. Our novel friction model aims at understanding the link between the microscopic origins of friction dynamics and the response of the engineering-level friction induced vibrations. The approach is based on the assumption that the time- and velocity-dependent friction coefficient is mainly caused by creep growth of surface asperity contacts (microscopic contact patches between two rough surfaces) as proposed by Kragelskii, Rabinowicz, Scholz and others. At the heart of our approach is a new asperity model that includes creep effects. Based on the pioneering work of Etsion et al., we conducted extensive FEM simulations to analyze the creep behavior of an elastic-perfectly plastic hemisphere in contact with a rigid flat. The new asperity model is used as a building block for a fractal model for the contact between rough surfaces. The model yields the time- and velocity-dependent macroscopic friction coefficient. We demonstrate the practical applicability of the new dynamic friction model in a simple block-on-conveyor test case to analyze friction induced vibrations.


2011 ◽  
Vol 80-81 ◽  
pp. 855-859
Author(s):  
Wei Ge Liang ◽  
Zhen Shan Zhang ◽  
Lan Luo

Friction property plays an important role in the operating process of engine, the analysis and discuss about friction property can help to improve the operating performance of engine. Based on the basic structure of swash-plate engine, the sphere rolling friction model and the roller rolling friction model were established, and corresponding formulae of the rolling friction force and the rolling friction coefficient were deduced. Then as an application, we employed the exact parameters of a swash-plate engine to calculate the sphere rolling friction force, the sphere rolling friction coefficient, the roller rolling friction force and the roller rolling friction coefficient. According to comparison, we concluded that roller rolling friction force was far less than sphere rolling friction force, and roller rolling friction coefficient was far less than sphere rolling friction coefficient. Furthermore, we proposed two topics which would be our next study concerning engine friction property: friction-induced heat, and high temperature influence on friction property.


Author(s):  
Abdallah Hadji ◽  
Njuki Mureithi

A hybrid friction model was recently developed by Azizian and Mureithi [1] to simulate the friction behavior of tube-support interaction. However, identification of the model parameters remains unresolved. In previous work, the friction model parameters were identified using reverse the harmonic method, where the following quantities were indirectly obtained by measuring the vibration response of a beam: friction force, sliding speed of the force of impact and local displacement at the contact point. In the present work, the simulation by the finite element method (FEM) of a beam clamped at one end and simply supported with the consideration of friction effect at the other is conducted. This beam is used to validate the inverse harmonic balance method and the parameters of the friction models identified previously. Two static friction models (the Coulomb model and Stribeck model) are tested. The two models produce friction forces of the correct order of magnitude compared to the friction force calculated using the inverse harmonic balance method. However, the models cannot accurately reproduce the beam response; the Stribeck friction model is shown to give the response closer to experiments. The results demonstrate some of the challenges associated with accurate friction model parameter identification using the inverse harmonic balance method. The present work is an intermediate step toward identification of the hybrid friction model parameters and, longer term, improved analysis of tube-support dynamic behavior under the influence of friction.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
H. Sojoudi ◽  
M. M. Khonsari

A simple but realistic dynamic friction model for the lubricated sliding contact is developed based on decoupling the steady and unsteady terms in Reynolds equation. The model realistically captures the physics of friction behavior both when speed is increased unidirectionally or when operating under oscillating condition. The model can simulate the transition from boundary to mixed to full film regimes as the speed is increased. Two different classes of simulations are performed to show the utility of the model: the so-called quasisteady, where the sliding velocity is varied very slowly, and the oscillating sliding velocity, where the friction coefficient exhibits a hysteresis type behavior. Both categories of simulation are verified by comparing the results with published experimental data.


Sign in / Sign up

Export Citation Format

Share Document