Identification of Critical Surface Displacement Parameters for Characterization of Subsurface Flaws

Author(s):  
Paul D. Herrington ◽  
Paul J. Schilling ◽  
Melody A. Verges ◽  
Prashanth K. Durgam

Several NDE methods provide accurate techniques for measuring surface displacements. While these techniques have been successful in identification of near-surface embedded flaws, they generally offer little in terms of characterization of the flaws. The ability to characterize embedded flaws from measurements of surface displacements would offer substantial benefits, especially in terms of remaining life predictions. This paper focuses on the identification of critical out-of-plane surface displacement parameters, and assessment of the potential to characterize subsurface flaw geometry based on these parameters. Finite element models of a homogeneous material have been created that vary the embedded flaw size and edge distance. The results suggest that there is potential to characterize the subsurface geometry from the surface displacement parameters.

2021 ◽  
Author(s):  
Selina S. Fenske ◽  
Virginia G. Toy ◽  
Bernhard Schuck ◽  
Anja M. Schleicher ◽  
Klaus Reicherter

<p>The tectonophysical paradigm that earthquake ruptures should not start, or easily propagate into, the shallowest few kilometers of Earth’s crust makes it difficult to understand why damaging surface displacements have occurred during historic events. The paradigm is supported by decades of analyses demonstrating that near the surface, most major fault zones are composed of clay minerals – particularly extraordinarily weak smectites – which most laboratory physical measurements suggest should prevent surface rupture if present. Recent studies of New Zealand’s Alpine Fault Zone (AFZ) demonstrate smectites are absent from some near surface fault outcrops, which may explain why this fault was able to offset the surface locally in past events. The absence of smectites in places within the AFZ can be attributed to locally exceptionally high geothermal gradients related to circulation of meteoric (surface-derived) water into the fault zone, driven by significant topographic gradients. The record of surface rupture of the AFZ is heterogeneous, and no one has yet systematically examined the distribution of segments devoid of evidence for recent displacement. There are significant implications for seismic hazard, which comprises both surface displacements and ground shaking with intensity related to the area of fault plane that ruptures (which will be reduced if ruptures do not reach the surface).  We will present results of new rigorous XRD clay mineral analyses of AFZ principal slip zone gouges that indicate where smectites are present, and consider if these display systematic relationships to surface displacement records. We also plan to apply the same methodology to the Carboneras Fault Zone in Spain, and the infrequent Holocene-active faults in Western Germany.</p>


2006 ◽  
Vol 13-14 ◽  
pp. 91-98 ◽  
Author(s):  
Pete T. Theobald ◽  
F. Dar

This paper proposes a method for both the out-of-plane and in-plane displacement sensitivity calibration of an acoustic emission (AE) sensor. In the method, a laser homodyne interferometer is used to measure the out-of-plane and in-plane displacement of the surface of a large test block excited by a repeatable source transducer. The out-of-plane displacement is measured by aligning the laser beam perpendicular to the surface with time gating of the receive waveform used to isolate only the direct arrival of the longitudinal wave produced by the piston source transducer. For the in-plane displacement measurement, the laser beam is aligned parallel to the surface to intersect a small optically reflective step with the time waveform being gated to measure only the direct shear arrival produced using a normal incidence shear wave source transducer. In each case, the interferometer measurement is followed by coupling the sensor under test to the measurement surface, which is then exposed to the same acoustic field and the sensor output signal measured. This substitution method allows the sensor sensitivity to be obtained in terms of volts per unit displacement for both the out-of-plane and in-plane surface displacement. The method allows a comprehensive description of an AE sensor response to different planes of displacement and offers the potential for a traceable sensor calibration to units of length.


Author(s):  
Julia T. Luck ◽  
C. W. Boggs ◽  
S. J. Pennycook

The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared below. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.


Author(s):  
Randal Mulder ◽  
Sam Subramanian ◽  
Tony Chrastecky

Abstract The use of atomic force probe (AFP) analysis in the analysis of semiconductor devices is expanding from its initial purpose of solely characterizing CMOS transistors at the contact level with a parametric analyzer. Other uses found for the AFP include the full electrical characterization of failing SRAM bit cells, current contrast imaging of SOI transistors, measuring surface roughness, the probing of metallization layers to measure leakages, and use with other tools, such as light emission, to quickly localize and identify defects in logic circuits. This paper presents several case studies in regards to these activities and their results. These case studies demonstrate the versatility of the AFP. The needs and demands of the failure analysis environment have quickly expanded its use. These expanded capabilities make the AFP more valuable for the failure analysis community.


1999 ◽  
Vol 607 ◽  
Author(s):  
L. Bürkle ◽  
F. Fuchs ◽  
R. Kiefer ◽  
W. Pletschen ◽  
R. E. Sah ◽  
...  

AbstractInAs/(GaIn)Sb superlattice photodiodes with a cutoff wavelength of 8.711μm show adynamic impedance of R0A= 1.5 kωcm2at 77 K and a responsivity of 2 A/W, corresponding to a detectivity of D*= 1 x 1012 cmv√Hz/W. Diffusion limited performance is observed above 100 K. At lower temperatures the diodesare limited by generation-recombination currents. An analysis of the influence of different diode sidewall passivations on the surface contribution to the diode leakage current is presented. The out-of-plane electron mobility as well as the relative contributions of the electron and hole diffusion currents to the diode current were determined by a measurement of the magnetic field dependence of the reverse saturation current density of the diodes


Sign in / Sign up

Export Citation Format

Share Document