Optimization of Shear Driven Droplet Generation in a Microfluidic Device

Author(s):  
John Collins ◽  
Yung-Chieh Tan ◽  
Abraham P. Lee

Hydrophilic and lipophilic interfaces of fluids play an important role in the formation of droplets. A large collection of droplets constitutes emulsions of water dispersive phase into oil continuous phase. Since droplet generation forms the basis of the manufacturing of emulsion, great efforts have been made to understand the science, technological and industrial problems associated with the generation of droplets. This paper presents the optimization of a novel method of droplet generation [1] in a microchannel resulting from the laminar co-flow of water and oil in a T type channel. Water in oil droplets are formed with olive oil (interfacial tension 28mN/m, viscosity 84mPa/s, density 918Kg/m3). At the T-junction, the water stream sent through the middle channel is sheared and cut by the oil stream sent through the outer channel. Competition between interfacial tension and the Laplace pressure at the oil/water interface results in droplets of finite diameter. Fluid properties such as density, viscosity and surface tension and the flow parameters such as pressure, mass flow rate and velocity are varied at the inlets and outlets to optimize size, frequency and periodicity of droplets using CFD-ACE+, a multiphysics modeling tool (CFDRC, Huntsville, AL).

Author(s):  
Katerina Loizou ◽  
Voon-Loong Wong ◽  
Wim Thielemans ◽  
Buddhika Hewakandamby

Over the last decade, significant work has been performed in an attempt to quantify the effect of different parameters such as flowrate, geometrical and fluid characteristics on the droplet break up mechanism in microfluidic T-Junctions. This demand is dictated by the need of tight control of the size and dispersity of the droplets generated in such geometries. Even though several researchers have investigated the effect of viscosity ratio on both the droplet break up mechanism as well as on the regime transition, fluid properties have not been included in most scaling laws. It is therefore evident that the contribution of fluid properties has not been quantified thoroughly. In the present work, the effect of fluid properties on the volume of droplets generated in a microfluidic T-junction is investigated. The main aim of this work is to examine the influence of viscosity of both the dispersed and continuous phase as well as the effect of interfacial tension on the size of droplet generated along with the break up mechanism. Three different oils have been utilised as continuous phase in this work to enable investigation of the effect of viscosity of the continuous phase with experiments performed at constant Capillary numbers. Various glycerol weight percentages have been employed to vary the viscosity of the dispersed phase fluid (water). Lastly, the effect of interfacial tension has been explored using two of the oils at constant μcUc (viscous force term). High speed imaging has been utilised to visualise and measure the volume of the resulting droplets. The viscosity ratio (viscosity of dispersed phase over viscosity of continuous phase) between the two phases appears to affect the droplet generation mechanism, especially for the highest viscosity ratio employed (mineral oil-water system) where the system behaves in a noticeably different way. Influence of interfacial tension is also noticeable even though less evident. In terms of the effect of viscosity of dispersed phase on the droplet generation a small difference on the volume of the droplets generated in olive oil glycerol systems is also reported. In an attempt to enumerate the effect of fluid properties on the droplet generation mechanism in a microfluidic T-junction, this paper will present supporting evidence in detail on the above and a comparison of the findings with the existing theories.


Author(s):  
Jingwei Zhang ◽  
Si Da Ling ◽  
zhuo chen ◽  
Wenjun Ma ◽  
jianhong Xu

The droplet generation mechanism in the step T-junction remains unknown, especially for the transition stage from dripping to jetting . In this work, the droplet generation mechanism was systematically investigated in a novel modified step T-junction. We found that under different fluid regimes, different factors take action. In dripping regime, the interfacial tension dominated the formation mechanism when the surfactant concentration was controlled below micelle concentration (CMC). In jetting regime, our experimental results showed that the influence of the surfactant concentration on the size of generated droplets was rather negligible while the phase ratio indeed determined such a parameter. In the dripping-jetting transition stage, an abnormal increase of droplet size was observed despite the increase of continuous phase flow. To the best for our knowledge, it is the first study to report generation mechanism in modified step T-junction from dripping to jetting regimes.


1992 ◽  
Vol 57 (7) ◽  
pp. 1419-1423
Author(s):  
Jindřich Weiss

New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 317-327
Author(s):  
Chenliang Shi ◽  
Ling Lin ◽  
Yukun Yang ◽  
Wenjia Luo ◽  
Maoqing Deng ◽  
...  

AbstractThe influence of density of amino groups, nanoparticles dimension and pH on the interaction between end-functionalized polymers and nanoparticles was extensively investigated in this study. PS–NH2 and H2N–PS–NH2 were prepared using reversible addition–fragmentation chain transfer polymerization and atom transfer radical polymerization. Zero-dimensional carbon dots with sulfonate groups, one-dimensional cellulose nanocrystals with sulfate groups and two-dimensional graphene with sulfonate groups in the aqueous phase were added into the toluene phase containing the aminated PS. The results indicate that aminated PS exhibited the strongest interfacial activity after compounding with sulfonated nanoparticles at a pH of 3. PS ended with two amino groups performed better in reducing the water/toluene interfacial tension than PS ended with only one amino group. The dimension of sulfonated nanoparticles also contributed significantly to the reduction in the water/toluene interfacial tension. The minimal interfacial tension was 4.49 mN/m after compounding PS–NH2 with sulfonated zero-dimensional carbon dots.


2015 ◽  
Vol 93 (8) ◽  
pp. 1410-1415 ◽  
Author(s):  
Zhan Weng ◽  
Peng-Yuan Zhang ◽  
Guang-Wen Chu ◽  
Wei Wang ◽  
Jimmy Yun ◽  
...  

Author(s):  
Katerina Loizou ◽  
Wim Thielemans ◽  
Buddhika N. Hewakandamby

The main aim of this study is to examine how the droplet formation in microfluidic T-junctions is influenced by the cross-section and aspect ratio of the microchannels. Several studies focusing on droplet formation in microfluidic devices have investigated the effect of geometry on droplet generation in terms of the ratio between the width of the main channel and the width of the side arm of the T-junction. However, the contribution of the aspect ratio and thus that of the cross-section on the mechanism of break up has not been examined thoroughly with most of the existing work performed in the squeezing regime. Two different microchannel geometries of varying aspect ratios are employed in an attempt to quantify the effect of the ratio between the width of the main channel and the height of the channel on droplet formation. As both height and width of microchannels affect the area on which shear stress acts deforming the dispersed phase fluid thread up to the limit of detaching a droplet, it is postulated that geometry and specifically cross-section of the main channel contribute on the droplet break-up mechanisms and should not be neglected. The above hypothesis is examined in detail, comparing the volume of generated microdroplets at constant flowrate ratios and superficial velocities of continuous phase in two microchannel systems of two different aspect ratios operating at dripping regime. High-speed imaging has been utilised to visualise and measure droplets formed at different flowrates corresponding to constant superficial velocities. Comparing volumes of generated droplets in the two geometries of area ratio near 1.5, a significant increase in volume is reported for the larger aspect ratio utilised, at all superficial velocities tested. As both superficial velocity of continuous phase and flowrate ratio are fixed, superficial velocity of dispersed phase varies. However this variation is not considered to be large enough to justify the significant increase in the droplet volume. Therefore it can be concluded that droplet generation is influenced by the aspect ratio and thus the cross-section of the main channel and its effect should not be depreciated. The paper will present supporting evidence in detail and a comparison of the findings with the existing theories which are mainly focused on the squeezing regime.


2011 ◽  
Vol 60 (4) ◽  
pp. 445-458 ◽  
Author(s):  
Valentin Oleschuk ◽  
Gabriele Grandi

Six-phase motor drive supplied by four voltage source inverters with synchronized space-vector PWMNovel method of space-vector-based pulsewidth modulation (PWM) has been disseminated for synchronous control of four inverters feeding six-phase drive based on asymmetrical induction motor which has two sets of windings spatially shifted by 30 electrical degrees. Basic schemes of synchronized PWM, applied for control of four separate voltage source inverters, allow both continuous phase voltages synchronization in the system and required power sharing between DC-sources. Simulations show a behavior of six-phase system with continuous and discontinuous versions of synchronized PWM.


Sign in / Sign up

Export Citation Format

Share Document