A Novel Analysis of the Mechanics of Cochlea, the Inner Ear

Author(s):  
Amitava Biswas

The human ear is often regarded as a paragon of mechanical engineering. To understand how the hearing system works, scientists have proposed detailed models of its specific aspects—the transfer of acoustic energy from the atmosphere to the tympanic membrane via the external ear; the coupling of the tympanic membrane to the oval window of the cochlea via ossicles; the resultant fluidic oscillations in the cochlear ducts; the formation of traveling waves in the basilar membrane of the cochlea; the mechanical stimulation of inner hair cells by the basilar membrane; and the consequential transduction of nerve impulses. Scientists have also proposed models to explain the phenomenon of enhancement of the traveling waves in the basilar membrane by synchronized co-contraction in the length of outer hair cells (OHCs). Although it is unrealistic that any OHC would contract in length without expanding in diameter, the models proposed by other analysts have so far incorporated the longitudinal contraction of OHCs only, suggesting that the impact of any diametric expansion of OHCs would be relatively trival. Here we show that the basilar membrane would behave like a Beam-Column system, which may be significantly influenced by the diametric expansion of OHCs.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haim Sohmer

The three modes of auditory stimulation (air, bone and soft tissue conduction) at threshold intensities are thought to share a common excitation mechanism: the stimuli induce passive displacements of the basilar membrane propagating from the base to the apex (slow mechanical traveling wave), which activate the outer hair cells, producing active displacements, which sum with the passive displacements. However, theoretical analyses and modeling of cochlear mechanics provide indications that the slow mechanical basilar membrane traveling wave may not be able to excite the cochlea at threshold intensities with the frequency discrimination observed. These analyses are complemented by several independent lines of research results supporting the notion that cochlear excitation at threshold may not involve a passive traveling wave, and the fast cochlear fluid pressures may directly activate the outer hair cells: opening of the sealed inner ear in patients undergoing cochlear implantation is not accompanied by threshold elevations to low frequency stimulation which would be expected to result from opening the cochlea, reducing cochlear impedance, altering hydrodynamics. The magnitude of the passive displacements at threshold is negligible. Isolated outer hair cells in fluid display tuned mechanical motility to fluid pressures which likely act on stretch sensitive ion channels in the walls of the cells. Vibrations delivered to soft tissue body sites elicit hearing. Thus, based on theoretical and experimental evidence, the common mechanism eliciting hearing during threshold stimulation by air, bone and soft tissue conduction may involve the fast-cochlear fluid pressures which directly activate the outer hair cells.


2020 ◽  
Author(s):  
C. Elliott Strimbu ◽  
Yi Wang ◽  
Elizabeth S. Olson

ABSTRACTThe mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC) generated forces driven in part by the endocochlear potential (EP), the ~ +80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the EP in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea’s organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions (DPOAE) were monitored at the same times. Following the injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost their BF peak and showed low-pass responses, but retained nonlinearity, indicating that OHC electromotility was still operational. Thus, while electromotility is presumably necessary for amplification, its presence is not sufficient for amplification. The BF peak recovered nearly fully within 2 hours, along with a non-monotonic DPOAE recovery that suggests that physical shifts in operating condition are a final step in the recovery process.SIGNIFICANCEThe endocochlear potential, the +80 mV potential difference across the fluid filled compartments of the cochlea, is essential for normal mechanoelectrical transduction, which leads to receptor potentials in the sensory hair cells when they vibrate in response to sound. Intracochlear vibrations are boosted tremendously by an active nonlinear feedback process that endows the cochlea with its healthy sensitivity and frequency resolution. When the endocochlear potential was reduced by an injection of furosemide, the basilar membrane vibrations resembled those of a passive cochlea, with broad tuning and linear scaling. The vibrations in the region of the outer hair cells also lost the tuned peak, but retained nonlinearity at frequencies below the peak, and these sub-BF responses recovered fairly rapidly. Vibration responses at the peak recovered nearly fully over 2 hours. The staged vibration recovery and a similarly staged DPOAE recovery suggests that physical shifts in operating condition are a final step in the process of cochlear recovery.


1999 ◽  
Vol 82 (5) ◽  
pp. 2798-2807 ◽  
Author(s):  
Xintian Hu ◽  
Burt N. Evans ◽  
Peter Dallos

The basilar membrane in the mammalian cochlea vibrates when the cochlea receives a sound stimulus. This mechanical vibration is transduced into hair cell receptor potentials and thereafter encoded by action potentials in the auditory nerve. Knowledge of the mechanical transformation that converts basilar membrane vibration into hair cell stimulation has been limited, until recently, to hypothetical geometric models. Experimental observations are largely lacking to prove or disprove the validity of these models. We have developed a hemicochlea preparation to visualize the kinematics of the cochlear micromechanism. Direct mechanical drive of 1–2 Hz sinusoidal command was applied to the basilar membrane. Vibration patterns of the basilar membrane, inner and outer hair cells, supporting cells, and tectorial membrane have been recorded concurrently by means of a video optical flow technique. Basilar membrane vibration was driven in a direction transversal to its plane. However, the direction of the resulting vibration was found to be essentially radial at the level of the reticular lamina and cuticular plates of inner and outer hair cells. The tectorial membrane vibration was mainly transversal. The transmission ratio between cilia displacement of inner and outer hair cells and basilar membrane vibration is in the range of 0.7–1.1. These observations support, in part, the classical geometric models at low frequencies. However, there appears to be less tectorial membrane motion than predicted, and it is largely in the transversal direction.


1992 ◽  
Vol 336 (1278) ◽  
pp. 317-324 ◽  

Receptor potentials recorded from outer hair cells (ohc ) and inner hair cells (ihc) in the basal highfrequency turn were com pared. The dc component of the ihc receptor potential is maximized to ensure that ihcs can signal a voltage response to high-frequency tones. The ohc dc component is minimized so that ohcs transduce in the most sensitive region of their operating range. The phase and magnitude of ohc receptor potentials were recorded as an indicator of the magnitude and phase of the energy which is fed back to the basilar membrane to provide the basis for the sharp tuning and fine sensitivity of the cochlea to tones. IHC receptor potentials were recorded to assess the net effect of the feedback on the mechanics of the cochlea. It was concluded that ohcs generate feedback which enhances the ihc responses only at the best frequency. At frequencies below cf, ihc dc responses are elicited only when the ohc ac responses begin to saturate.


1992 ◽  
Vol 68 (4) ◽  
pp. 1087-1099 ◽  
Author(s):  
M. A. Ruggero ◽  
L. Robles ◽  
N. C. Rich

1. The vibratory response to two-tone stimuli was measured in the basilar membrane of the chinchilla cochlea by means of the Mossbauer technique or laser velocimetry. Measurements were made at sites with characteristic frequency (CF, the frequency at which an auditory structure is most sensitive) of 7-10 kHz, located approximately 3.5 mm from the oval window. 2. Two-tone suppression (reduction in the response to one tone due to the presence of another) was demonstrated for CF probe tones and suppressor tones with frequencies both higher and lower than CF, at moderately low stimulus levels, including probe-suppressor combinations for which responses to the suppressor were lower than responses to the probe tone alone. 3. For a fixed suppressor tone, suppression magnitude decreased as a function of increasing probe intensity. 4. The magnitude of suppression increased monotonically with suppressor intensity. 5. The rate of growth of suppression magnitude with suppressor intensity was higher for suppressors in the region below CF than for those in the region above CF. 6. For low-frequency suppressor tones, suppression magnitude varied periodically, attaining one or two maxima within each period of the suppressor tone. 7. Suppression was frequency tuned: for either above-CF or below-CF suppressor tones, suppression magnitude reached a maximum for probe frequencies near CF. 8. Cochlear damage or death diminished or abolished suppression. There was a clear positive correlation between magnitude of suppression and basilar-membrane sensitivity for responses to CF tones. 9. Suppression tended to be accompanied by small phase lags in responses to CF probe tones. 10. Because all of the features of two-tone suppression at the basilar membrane match qualitatively (and, generally, also quantitatively) the features of two-tone rate suppression in auditory-nerve fibers, it is concluded that neural two-tone rate suppression originates in mechanical phenomena at the basilar membrane. 11. Because the lability of mechanical suppression parallels the loss of sensitivity and frequency tuning due to outer hair cell dysfunction, the present findings suggest that mechanical two-tone suppression arises from an interaction between the outer hair cells and the basilar membrane.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1880
Author(s):  
Paul Gratias ◽  
Jamal Nasr ◽  
Corentin Affortit ◽  
Jean-Charles Ceccato ◽  
Florence François ◽  
...  

Recent studies demonstrated that reversible continuous noise exposure may induce a temporary threshold shift (TTS) with a permanent degeneration of auditory nerve fibers, although hair cells remain intact. To probe the impact of TTS-inducing impulse noise exposure on hearing, CBA/J Mice were exposed to noise impulses with peak pressures of 145 dB SPL. We found that 30 min after exposure, the noise caused a mean elevation of ABR thresholds of ~30 dB and a reduction in DPOAE amplitude. Four weeks later, ABR thresholds and DPOAE amplitude were back to normal in the higher frequency region (8–32 kHz). At lower frequencies, a small degree of PTS remained. Morphological evaluations revealed a disturbance of the stereociliary bundle of outer hair cells, mainly located in the apical regions. On the other hand, the reduced suprathreshold ABR amplitudes remained until 4 weeks later. A loss of synapse numbers was observed 24 h after exposure, with full recovery two weeks later. Transmission electron microscopy revealed morphological changes at the ribbon synapses by two weeks post exposure. In addition, increased levels of oxidative stress were observed immediately after exposure, and maintained for a further 2 weeks. These results clarify the pathology underlying impulse noise-induced sensory dysfunction, and suggest possible links between impulse-noise injury, cochlear cell morphology, metabolic changes, and hidden hearing loss.


2018 ◽  
Vol 10 (4) ◽  
pp. 48
Author(s):  
Valeri Goussev

The article is devoted to the specific consideration of the cochlear transduction for the low level sound intensities, which correspond to the regions near the perception threshold. The basic cochlea mechanics is extended by the new concept of the molecular filters, which allows discussing the transduction mechanism on the molecular level in the space-time domain. The molecular filters are supposed to be built on the set of the stereocilia of every inner hair cell. It is hypothesized that the molecular filters are the sensors in the feedback loop, which includes also outer hair cells along with the tectorial membrane and uses the zero compensation method to evaluate the traveling wave shape on the basilar membrane. Besides the compensation, the feedback loop, being spatially distributed along the cochlea, takes control over the tectorial membrane strain field generated by the outer hair cells, and implements it as the mechanism for the automatic gain control in the sound transduction.


2016 ◽  
Vol 113 (35) ◽  
pp. 9910-9915 ◽  
Author(s):  
Tianying Ren ◽  
Wenxuan He ◽  
David Kemp

It is commonly believed that the exceptional sensitivity of mammalian hearing depends on outer hair cells which generate forces for amplifying sound-induced basilar membrane vibrations, yet how cellular forces amplify vibrations is poorly understood. In this study, by measuring subnanometer vibrations directly from the reticular lamina at the apical ends of outer hair cells and from the basilar membrane using a custom-built heterodyne low-coherence interferometer, we demonstrate in living mouse cochleae that the sound-induced reticular lamina vibration is substantially larger than the basilar membrane vibration not only at the best frequency but surprisingly also at low frequencies. The phase relation of reticular lamina to basilar membrane vibration changes with frequency by up to 180 degrees from ∼135 degrees at low frequencies to ∼-45 degrees at the best frequency. The magnitude and phase differences between reticular lamina and basilar membrane vibrations are absent in postmortem cochleae. These results indicate that outer hair cells do not amplify the basilar membrane vibration directly through a local feedback as commonly expected; instead, they actively vibrate the reticular lamina over a broad frequency range. The outer hair cell-driven reticular lamina vibration collaboratively interacts with the basilar membrane traveling wave primarily through the cochlear fluid, which boosts peak responses at the best-frequency location and consequently enhances hearing sensitivity and frequency selectivity.


Sign in / Sign up

Export Citation Format

Share Document