Absolute Stability Criteria of Lurie-Type Nonlinear Systems With MIMO Bounded Time-Delays

Author(s):  
Shuli Guo ◽  
Shaoze Yan ◽  
Shizhu Wen

The time delay of Lurie nonlinear system is systems is estimated in which the origin of the nonlinear systems is absolute stability by using a Liapunov-Razumikhn function. Many sufficient conditions are obtained about absolute stability criteria of nonlinear systems. A example is presented to explain the strange time delay phenomena.

2001 ◽  
Vol 7 (5) ◽  
pp. 413-431 ◽  
Author(s):  
Xinzhi Liu ◽  
Xuemin shen ◽  
Yi Zhang

In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chun-xia Dou ◽  
Zhi-sheng Duan ◽  
Xing-bei Jia ◽  
Xiao-gang Li ◽  
Jin-zhao Yang ◽  
...  

A delay-dependent robust fuzzy control approach is developed for a class of nonlinear uncertain interconnected time delay large systems in this paper. First, an equivalent T–S fuzzy model is extended in order to accurately represent nonlinear dynamics of the large system. Then, a decentralized state feedback robust controller is proposed to guarantee system stabilization with a prescribedH∞disturbance attenuation level. Furthermore, taking into account the time delays in large system, based on a less conservative delay-dependent Lyapunov function approach combining with linear matrix inequalities (LMI) technique, some sufficient conditions for the existence ofH∞robust controller are presented in terms of LMI dependent on the upper bound of time delays. The upper bound of time-delay and minimizedH∞performance index can be obtained by using convex optimization such that the system can be stabilized and for all time delays whose sizes are not larger than the bound. Finally, the effectiveness of the proposed controller is demonstrated through simulation example.


2019 ◽  
Vol 41 (15) ◽  
pp. 4311-4321 ◽  
Author(s):  
Mai Viet Thuan ◽  
Dinh Cong Huong ◽  
Nguyen Huu Sau ◽  
Quan Thai Ha

This paper addresses the problem of unknown input fractional-order functional state observer design for a class of fractional-order time-delay nonlinear systems. The nonlinearities consist of two parts where one part is assumed to satisfy both the one-sided Lipschitz condition and the quadratically inner-bounded condition and the other is not necessary to be Lipschitz and can be regarded as an unknown input, making the wider class of considered nonlinear systems. By taking the advantages of recent results on Caputo fractional derivative of a quadratic function, we derive new sufficient conditions with the form of linear matrix inequalities (LMIs) to guarantee the asymptotic stability of the systems. Four examples are also provided to show the effectiveness and applicability of the proposed method.


Axioms ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 80 ◽  
Author(s):  
Valery Y. Glizer

Two types of singularly-perturbed nonlinear time delay controlled systems are considered. For these systems, sufficient conditions of the functional null controllability are derived. These conditions, being independent of the parameter of singular perturbation, provide the controllability of the systems for all sufficiently small values of the parameter. Illustrative examples are presented.


Author(s):  
Mansour Karkoub ◽  
Tzu Sung Wu

In this paper, the design problem of delayed output feedback control scheme using two-layer interval fuzzy observers for a class of nonlinear systems with state and output delays is investigated. The Takagi-Sugeno type fuzzy linear model with an on-line update law is used to approximate the nonlinear system. Based on the fuzzy model, a two-layer interval fuzzy observer is used to reconstruct the system states according to equal interval output time delay slices. Subsequently, a delayed output feedback adaptive fuzzy controller is developed to override the nonlinearities, time delays, and external disturbances such that the H∞ tracking performance is achieved. The linguistic information is developped by setting the membership functions of the fuzzy logic system and the adaptation parameters to estimate the model uncertainties directly for using linear analytical results instead of estimating nonlinear system functions. The filtered tracking error dynamics are designed to satisfy the Strictly Positive Realness (SPR) condition. Based on the Lyapunov stability criterion and linear matrix inequalities (LMIs), some sufficient conditions are derived so that all states of the system are uniformly ultimately bounded and the effect of the external disturbances on the tracking error can be attenuated to any prescribed level and consequently an H∞ tracking control is achieved. Finally, a numerical example of a two-link robot manipulator is given to illustrate the effectiveness of the proposed control scheme.


Author(s):  
Tadeusz Kaczorek

Abstract The positivity and absolute stability of a class of fractional nonlinear continuous-time and discrete-time systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of fractional positive nonlinear systems are also given.


Author(s):  
Pavel A. Shamanaev ◽  
Olga S. Yazovtseva

The article states the sufficient polystability conditions for part of variables for nonlinear systems of ordinary differential equations with a sufficiently smooth right-hand side. The obtained theorem proof is based on the establishment of a local componentwise Brauer asymptotic equivalence. An operator in the Banach space that connects the solutions of the nonlinear system and its linear approximation is constructed. This operator satisfies the conditions of the Schauder principle, therefore, it has at least one fixed point. Further, using the estimates of the non-zero elements of the fundamental matrix, conditions that ensure the transition of the properties of polystability are obtained, if the trivial solution of the linear approximation system to solutions of a nonlinear system that is locally componentwise asymptotically equivalent to its linear approximation. There are given examples, that illustrate the application of proven sufficient conditions to the study of polystability of zero solutions of nonlinear systems of ordinary differential equations, including in the critical case, and also in the presence of positive eigenvalues.


Author(s):  
Suresh B. Reddy

Abstract Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers are among the most common schemes for control since their formulation nearly a century ago. They have been very successful in many applications, even as we have migrated from analog implementations to digital control systems. While there is rich literature for design and analysis of PI/PID controllers for linear time-invariant systems with modeled dynamics, the tools for analysis and design for nonlinear systems with unknown dynamics are limited, despite their known effectiveness. This paper extends previous observations about a form of discrete Time Delay Control’s equivalence to a generalized PI controller for more general canonical systems, with additional complimentary feedback linearization of known dynamics, as desired. In addition, sufficient conditions for Bounded Input-Bounded Output (BIBO) as well as exponential stability are developed in this paper for the form of discrete TDC that is closest to generalized discrete PI equivalent controller, for multi-input multi-output nonlinear systems, including nonaffine cases. Accordingly, design procedures are suggested for such discrete TDC, and generalized discrete PI controller for nonlinear systems.


2012 ◽  
Vol 263-266 ◽  
pp. 179-183
Author(s):  
Qing Liu

A state time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous time domain is sophisticated. It is appropriate to obtain its corresponding discrete time model for implementation via a digital computer. A new method for the discretization of nonlinear systems is proposed in this paper. This method is applied to the sampled data representation of a nonlinear system with constant state time delay. The proposed scheme provides a finite dimensional representation for nonlinear systems with state time delay enabling existing nonlinear controller design techniques to be applied to them. A performance of the proposed method is evaluated using a nonlinear system with state time delay.


Sign in / Sign up

Export Citation Format

Share Document