Modelling Tow Compression in Textile Preforms During Composites Processing

Aerospace ◽  
2004 ◽  
Author(s):  
P. Potluri ◽  
V. S. Thammandra ◽  
R. B. Ramgulam

Fiber assemblies, in the form of woven, braided, nonwoven or knitted structures, are used as reinforcements in composites. These textile structures are subjected to in-plane membrane stresses such as tensile and shear, and out-of-plane stresses such as bending and transverse compression. Amongst various modes of deformation, transverse compaction behaviour is the least understood mode; however this mode is very important for composites processing using vacuum forming, resin transfer moulding, thermoforming and hot compaction methods. The present paper reports a computational approach to predicting the load-deformation behaviour of textile structures under compressive loading. During the compression of a random fiber assembly, fibers are subjected to kinematic displacements, bending and finally transverse compression of individual fibres. In the case of interlaced architectures, such as woven and braided structures, it is convenient to deal with deformations at meso-scale involving yarns or tows, and deal with inter-fiber friction and fibre compression at yarn/tow level. It can be seen from the load deformation graphs that the initial part is dominated by bending energy and the final part by compression energy. A combined yarn bending and compression model was in good agreement with the experimental curve during the entire load-deformation cycle. On the other hand, an elastica-based bending model predicts well during the initial part while tow compression model predicts well during the final part. Inter-fiber friction was initially ignored — this is being introduced in the refined model for both the dry and wet states.

2016 ◽  
Vol 710 ◽  
pp. 357-362
Author(s):  
Irene Scheperboer ◽  
Evangelos Efthymiou ◽  
Johan Maljaars

Aluminium plates containing a single hole or multiple holes in a row are recently becoming very popular among architects and consultant engineers in many constructional applications, due to their reduced weight, as well as facilitating ventilation and light penetration of the buildings. However, there are still uncertainties concerning their structural behaviour, preventing them from wider utilization. In the present paper, local buckling phenomenon of perforated aluminium plates has been studied using the finite element method. For the purposes of the research work, plates with simply supported edges in the out-of-plane direction and subjected to uniaxial compression are examined. In view of perforations, circular cut-outs and the total cut-out size has been varied between 5 and 40% of the total plate area. Moreover, different perforation patterns have been investigated, from a single, central cut-out to a more refined pattern consisting of up to 25 holes equally distributed over the plate. Regarding the material characteristics, several aluminium alloys are considered and compared to steel grade A36 on plates of different slenderness. For each case the critical (Euler) buckling load and the ultimate resistance has been determined.A study into the boundary conditions of the plate showed that the restrictions at the edges parallel to the load direction have a large influence on the critical buckling load. Restraining the top or bottom edge does not significantly influence the resistance of the plate.The results showed that the ultimate resistance of aluminium plates containing multiple holes occurs at considerably larger out-of-plane displacement as that of full plates. For very large total cut-out, a plate containing a central hole has a larger resistance than a plate with equal cut-out percentage but with multiple holes. The strength and deformation in the post-critical regime, i.e. the difference between the critical buckling load and the ultimate resistance, differs significantly for different number of holes and cut-out percentage.


Author(s):  
Hanae Chabba ◽  
Driss Dafir

Aluminum alloys have been attracting significant attention. Especially Al-Mg-Si alloys can exhibit an excellent balance between strength and ductility. Deformation mechanisms and microstructural evolution are still challenging issues. Accordingly, to describe how the type of phase influence mechanical behaviour of Al/Mg/Si alloys, in this paper atomic simulations are performed to investigate the uniaxial compressive behaviour of Al-Mg-Si ternary phases. The compression is at the same strain rate (3.1010 s−1); using Modified Embedded Atom Method (MEAM) potential to model the deformation behaviour. From these simulations, we get the total radial distribution function; the stress-strain responses to describe the elastic and plastic behaviors of GP-AlMg4Si6, U2-Al4Mg4Si4 and β-Al3Mg2Si6 phases. For a Detailed description of which phase influence hardness and ductility of these alloys; the mechanical properties are determined and presented. These stress-strain curves obtained show a rapid increase in stress up to a maximum followed by a gradual drop when the specimen fails by ductile fracture. From the results, it was found that GP-AlMg4Si6 & U2-Al4Mg4Si4 phases are brittle under uniaxial compressive loading while β-Al3Mg2Si6 phase is very ductile under the same compressive loading. The engineering stress-strain relationship suggests that β-Al3Mg2Si6 phase have high elasticity limit, ability to resist deformation and have the advantage of being highly malleable. Molecular dynamics software LAMMPS was used to simulate and build the Al-Mg-Si ternary system.


2018 ◽  
Vol 38 (2) ◽  
pp. 49-61 ◽  
Author(s):  
M Tarfaoui ◽  
M Nachtane

A series of split Hopkinson pressure bar tests on two-dimensional and three-dimensional woven composites were presented in order to obtain a reliable comparison between the two types of composites and the effect of the z-yarns along the third direction. These tests were done along different configurations: in-plane and out-of-plane compression test. For the three-dimensional woven composite, two different configurations were studied: compression responses along to the stitched direction and orthogonal to the stitched direction. It was found that three-dimensional woven composites exhibit an increase in strength for both: in-plane and out-of-plane tests.


2015 ◽  
Vol 34 (19) ◽  
pp. 1593-1602 ◽  
Author(s):  
Tomoyuki Fujii ◽  
Keiichiro Tohgo ◽  
Naoya Urata ◽  
Yoshinobu Shimamura ◽  
Tomohiro Hasegawa ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5897
Author(s):  
Matej Borovinsek ◽  
Petr Koudelka ◽  
Jan Sleichrt ◽  
Michal Vopalensky ◽  
Ivana Kumpova ◽  
...  

Advanced pore morphology (APM) foam elements are almost spherical foam elements with a solid outer shell and a porous internal structure mainly used in applications with compressive loading. To determine how the deformation of the internal structure and its changes during compression are related to its mechanical response, in-situ time-resolved X-ray computed microtomography experiments were performed, where the APM foam elements were 3D scanned during a loading procedure. Simultaneously applying mechanical loading and radiographical imaging enabled new insights into the deformation behaviour of the APM foam samples when the mechanical response was correlated with the internal deformation of the samples. It was found that the highest stiffness of the APM elements is reached before the appearance of the first shear band. After this point, the stiffness of the APM element reduces up to the point of the first self-contact between the internal pore walls, increasing the sample stiffness towards the densification region.


2019 ◽  
Vol 25 ◽  
pp. 68-72
Author(s):  
Michaela Neuhäuserová ◽  
Petr Koudelka ◽  
Jan Falta ◽  
Marcel Adorna ◽  
Tomáš Fíla ◽  
...  

The paper is focused on evaluation of the relation between mechanical properties of 3D printed stainless steel 316L-0407 and printing direction (i.e. the orientation of the part which is being printed in the manufacturing device) subjected to compressive loading at different strain-rates. In order to evaluate the strain rate dependency of the 3D printed material’s compressive characteristics, dynamic and quasi-static experiments were performed. Three sets of bulk specimens were produced, each having a different printing orientation with respect to the powder bed plane (vertical, horizontal and tilted). To assess the deformation behaviour of the 3D printed material, compressive stress-strain diagrams and compressive yield strength and tangent modulus were evaluated.


2019 ◽  
Vol 72 (6) ◽  
pp. 1489-1492
Author(s):  
Prem Kumar ◽  
M. Arvinth Davinci ◽  
B. Aashranth ◽  
Kumar Vaibhaw ◽  
Dipti Samantaray ◽  
...  

2014 ◽  
Vol 2014 (0) ◽  
pp. _OS0531-1_-_OS0531-3_
Author(s):  
Tomoyuki FUJII ◽  
Keiichiro TOHGO ◽  
Naoya URATA ◽  
Yoshinobu SHIMAMURA ◽  
Tomohiro HASEGAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document