Hybrid Air Foil Bearings With External Pressurization

Tribology ◽  
2006 ◽  
Author(s):  
Daejong Kim ◽  
Soonkuk Park

Foil bearings are widely used for oil-free microturbomachinery. One of the critical technical issues related to reliability of the foil bearings is a coating wear on the top foil and rotor during start/stops. Especially for heavily loaded foil bearings, large start torque requires a large drive motor. Bearing cooling is also mandatory for certain applications because the foil bearings can generate significant amount of heat depending on operating conditions. Usually axial flow is used through the space between the top foil and bearing sleeve. In this paper, a hybrid air foil bearing with external pressurization is introduced. A flexible steel tube is attached to the backside of the top foil with orifice holes, and externally pressurized air is directly supplied to the bearing clearance to lift off the rotor before rotor spins. The hybrid operation eliminates the coating wear during start/stop cycles, reduces drag torque during starts, and eliminates axial flow cooling. The hybrid foil gas bearing was constructed using a multiple compression springs to demonstrate a feasibility of the concept. A simple analytical model to calculate top foil deflection under hydrostatic pressurization has been developed. Predictions via orbit simulations indicate the hybrid air foil bearings can have much higher critical speed and onset speed of instability than hydrodynamic counter part. Measured load capacity was slightly higher than hydrodynamic bearing even under smaller amount of air flow. In addition, the hybrid operation was very effective for bearing cooling even if the cooling flow rate was lower than hydrodynamic counterpart. The measured very small drag torque during the start/stop demonstrates the hybrid foil bearing can have near-infinite life time without wear of the bearing and rotor surface. The experimental studies show high potential of the hybrid air foil bearings for various oil-free turbomachinery, especially for heavily loaded high temperature applications.

Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Hossein Sadri ◽  
Henning Schlums ◽  
Michael Sinapius

Abstract Various solutions for the design of oil-free bearings are discussed in the literature. Adding hydrodynamic preload to the foil bearings by profiling the inner bore of the bearing is one of the most frequently investigated methods for improving the bearing stability and damping character of the entire system. However, this approach leads to a reduced load capacity and thus to an increased lift-off speed of the foil bearings. Observations of this kind lead to the presentation of various solutions for active bearing contour adjustment, which benefits from different profiles of the lubricant film. Most of these concepts use piezoelectric stack actuators to generate the required alternating force, although the influence of the stiffness of adaptive elements on bearing performance is not fully discussed in the literature. The focus of this study is on the investigation of structural conformity, i.e., the harmonization of stiffness with respect to the requirements for shape control and load capacity of an adaptive air foil bearing (AAFB). The result may be a basis for the consideration of additional degrees of freedom in any concept with shape control as the main design framework in interaction between the lubricant and compliant structure in an air foil bearing from both static and dynamic points of view.


Author(s):  
Robert J. Bruckner ◽  
Bernadette J. Puleo

An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperature. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25°C to 500°C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25°C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.


Author(s):  
Donghyun Lee ◽  
Daejong Kim

Air foil bearings (AFBs) have been recognized as the most promising for oil-free turbomachinery. However, the applications of AFBs to the relatively large turbomachinery have many technical challenges due to limited load capacity and wear during start/stops. A hybrid air foil bearing (HAFB), which combines the benefits of AFB and hydrostatic air bearing, was introduced earlier by the authors, and the experimental studies showed much larger load capacity at low speeds and much lesser friction torque during start/stop than hydrodynamic counterpart. The benefit of HAFB was recognized through the experimental studies, and the concept of hybrid operation was further developed to thrust air foil bearings. This paper presents novel design features of the hybrid air foil thrust bearing (HAFTB) with radially arranged bump foils and preformed Rayleigh step contour, and presents simulated static and dynamic characteristics of the HAFTB. A 2D thin plate equation in cylindrical coordinate was solved with the finite difference method for the prediction of the top foil deflection. Parametric studies were performed to evaluate the effect of various design parameters on the static and dynamic performances of HAFTB. At low speeds, a design with orifice located at the center of land region showed the highest load capacity, while a design with orifice located near the leading edge of land region showed the highest load capacity at high speeds. Direct and coupled bearing coefficients were also calculated for various operating conditions. The direct stiffness increases with supply pressure but the direct damping decreases with supply pressure. In addition, typical hardening effect of gas film accompanying increase of stiffness and decrease of damping was predicted in high frequency excitations.


2007 ◽  
Vol 129 (3) ◽  
pp. 628-639 ◽  
Author(s):  
Ju-ho Song ◽  
Daejong Kim

A new foil gas bearing with spring bumps was constructed, analyzed, and tested. The new foil gas bearing uses a series of compression springs as compliant underlying structures instead of corrugated bump foils. Experiments on the stiffness of the spring bumps show an excellent agreement with an analytical model developed for the spring bumps. Load capacity, structural stiffness, and equivalent viscous damping (and structural loss factor) were measured to demonstrate the feasibility of the new foil bearing. Orbit and coast-down simulations using the calculated stiffness and measured structural loss factor indicate that the damping of underlying structure can suppress the maximum peak at the critical speed very effectively but not the onset of hydrodynamic rotor-bearing instability. However, the damping plays an important role in suppressing the subsynchronous vibrations under limit cycles. The observation is believed to be true with any air foil bearings with different types of elastic foundations.


Author(s):  
Daejong Kim ◽  
Brian Nicholson ◽  
Lewis Rosado ◽  
Garry Givan

Foil bearings are one type of hydrodynamic air/gas bearings but with a compliant bearing surface supported by structural material that provides stiffness and damping to the bearing. The hybrid foil bearing (HFB) in this paper is a combination of a traditional hydrodynamic foil bearing with externally-pressurized air/gas supply system to enhance load capacity during the start and to improve thermal stability of the bearing. The HFB is more suitable for relatively large and heavy rotors where rotor weight is comparable to the load capacity of the bearing at full speed and extra air/gas supply system is not a major added cost. With 4,448N∼22,240N thrust class turbine aircraft engines in mind, the test rotor is supported by HFB in one end and duplex rolling element bearings in the other end. This paper presents experimental work on HFB with diameter of 102mm performed at the US Air force Research Laboratory. Experimental works include: measurement of impulse response of the bearing to the external load corresponding to rotor’s lateral acceleration of 5.55g, forced response to external subsynchronous excitation, and high speed imbalance response. A non-linear rotordynamic simulation model was also applied to predict the impulse response and forced subsynchronous response. The simulation results agree well with experimental results. Based on the experimental results and subsequent simulations, an improved HFB design is also suggested for higher impulse load capability up to 10g and rotordynamics stability up to 30,000rpm under subsynchronous excitation.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


2021 ◽  
Author(s):  
Fangcheng Xu ◽  
Jianhua Chu ◽  
Wenlin Luan ◽  
Guang Zhao

Abstract In this paper, single-bump foil models with different thickness and double-bump foil models with different initial clearances are established. The structural stiffness and equivalent viscous damping of double-bump foil and single-bump foil are analyzed by finite element simulation. The results show that the double-layer bump foil has variable stiffness and the displacement of the upper bump is greater than the initial gap when the two-layer bumps contact. A model for obtaining static characteristics of aerodynamic compliant foil thrust bearing is established on the basis of the stiffness characteristics of the double-bump foil. This paper solves gas Reynolds equation, the gas film thickness equation and the foil stiffness characteristic equation via the finite element method and the finite difference method. The static characteristics of the thrust bearings including the bearing pressure distribution, the gas film thickness and the friction power consumption have been obtained. The static characteristics of two kinds of foils have been compared and analyzed, and the effect of initial clearance on the static performance of double-bump foil bearings is studied. The results show that the double-bump foil structure can effectively improve the load capacity of thrust bearing. In addition, the static performance of double-bump foil thrust bearings is between the performance of the single-bump foil bearing and the double-bump foil bearing whose foil’s clearance is zero. The smaller the initial clearance is, the easier it will be to form a stable double-bump foil supporting structure.


1970 ◽  
Vol 92 (4) ◽  
pp. 650-659 ◽  
Author(s):  
L. Licht

A high-speed rotor, supported by gas-lubricated foil bearings, is free from self-excited whirl and displays no loss of load capacity when vibrated at frequency equal half the rotational speed [1]. It is demonstrated here that in addition to tolerance of geometrical imperfections, misalignment, and foreign particles [3, 4], the foil bearing performs well at elevated temperatures and accommodates appreciable temperature gradients. The foil bearing is endowed with superior wipe-wear characteristics, and the flexibility of the foil accounts not only for the stability of the foil bearing but also for its forgiveness with respect to distortion, contamination, and contact.


Sign in / Sign up

Export Citation Format

Share Document