Finite Element Study of a Micro-Opto-XRay Imaging Lens for Biomedical Applications

Author(s):  
H. Ostadi ◽  
Marino Arroyo ◽  
P. D. Prewett ◽  
S. E. Huq

Micro-Electro-Opto-Mechanical-Systems or MOEMS have potential applications inter alia in biomedical research. For instance, studies of the Bystander Effect require controlled irradiation of biological cells with focused X-rays to reveal the mechanisms occurring. X-ray focusing may be achieved using an adaptive optic micro-lens in which focusing is entirely reflective and therefore compatible with broad band illumination, an improvement over diffractive systems such as zone plates. Such a micro-lens can be microfabricated in the form of a bent-cantilever beam made from two dissimilar materials (polyimide and gold) in a thermal bimorph configuration, actuated with a micro heater. The parallel horizontal slots on the beam provide the transmission and focusing functions, while the heater provides control of the focal length through variation of the beam’s curvature. This novel system has been named 1D-MOXI (Micro-Opto-X-ray Imaging) and a basic system has already been made and tested thermo-mechanically. The present paper focuses on details of the geometry of the deformed slotted micro-beam lens element under thermally derived strain, using finite element analysis, and suggests an optimized MOEMS design, giving prescribed curvature of the lens through changing the number and the dimensions of the slots. The study reveals the localized stress and the small deviations of the micro-lens behavior from that of perfect spherical geometry. The focal length variation with temperature is compared with the experimental values and those predicted by an analytical model.

Author(s):  
H. N. Chapman ◽  
S. Bajt

Achromatic focusing systems for hard X-rays are examined which consist of a refractive lens paired with a diffractive lens. Compared with previous analyses, we take into account the behaviour of thick refractive lenses, such as compound refractive lenses and waveguide gradient index refractive lenses, in which both the focal length and the position of the principal planes vary with wavelength. Achromatic systems formed by the combination of such a thick refractive lens with a multilayer Laue lens are found that can operate at a focusing resolution of about 3 nm, over a relative bandwidth of about 1%. With the appropriate distance between the refractive and diffractive lenses, apochromatic systems can also be found, which operate over relative bandwidth greater than 10%. These systems can be used to focus short pulses without distorting them in time by more than several attoseconds. Such systems are suitable for high-flux scanning microscopy and for creating high intensities from attosecond X-ray pulses.


2017 ◽  
Vol 24 (3) ◽  
pp. 717-724
Author(s):  
Xianchao Cheng ◽  
Lin Zhang

Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.


1991 ◽  
Vol 01 (03) ◽  
pp. 251-258 ◽  
Author(s):  
M. TERASAWA

K, L, and M X-rays in the wavelengths between 6Å and 130Å generated by the bombardment of 200 keV protons and other heavy ions were measured by means of a wavelength dispersive Bragg’s spectrometer. The X-ray peak intensity was fairly high in general, while the background was very low. The technique was favorably applied to a practical analysis of several light elements (Be, B, C, N, O, and F). Use of moderate-energy heavy ions considering the wavelength selectivity in X-ray generation was effective for the element analysis. The high-resolution spectrometry in the analytical application of ion-induced X-ray generation was found to be useful for the study of fine electronic structure, e.g. satellite and hypersatellite X-ray study, and of the chemical state of materials.


1992 ◽  
Vol 63 (1) ◽  
pp. 591-594 ◽  
Author(s):  
H. T. H. Chen ◽  
W. Ng ◽  
R. L. Engelstad

1994 ◽  
Vol 159 ◽  
pp. 63-72 ◽  
Author(s):  
E. Churazov ◽  
M. Gilfanov ◽  
A. Finoguenov ◽  
R. Sunyaev ◽  
M. Chernyakova ◽  
...  

Brief review of AGNs observations in the X-ray / soft gamma-ray bands with the orbital observatory GRANAT is presented.For three well known bright objects (3C273, NGC4151 and Cen A) broad band (3 keV–few hundreds keV) spectra have been obtained. Imaging capabilities allowed accurate (several arcminutes) identification of these objects with sources of hard X-rays.The spectrum of NGC4151 above ≈ 50 keV was found to be much steeper than that in most of the previous observations, while in standard X-ray band the spectrum agrees with observed previously. The comparison of the observed spectra with that of the X-Ray Background (XRB) indicates that sources similar to NGC4151 could reproduce the shape of XRB spectrum in 3–60 keV band.Cen A was observed in the very low state during most of observations in 1990–1993, except for two observations in 1991. The variability of the hard X-ray flux has been detected on the time scales of several days.


2020 ◽  
Vol 497 (1) ◽  
pp. 648-655
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
S Mc Keague ◽  
B van Soelen ◽  
J P Marais ◽  
...  

ABSTRACT PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around an O9.5Ve star, LS 2883, with a period of ∼3.4 yr. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broad-band emission in the radio, X-rays, GeV, and TeV domains. While the radio, X-ray, and TeV light curves show rather similar behaviour, the GeV light curve appears very different with a huge outburst about a month after a periastron. The energy release during this outburst seems to significantly exceed the spin-down luminosity of the pulsar and both the GeV light curve and the energy release vary from one orbit to the next. In this paper, we present for the first time the results of optical observations of the system in 2017, and also reanalyse the available X-ray and GeV data. We present a new model in which the GeV data are explained as a combination of the bremsstrahlung and inverse Compton emission from the unshocked and weakly shocked electrons of the pulsar wind. The X-ray and TeV emission is produced by synchrotron and inverse Compton emission of energetic electrons accelerated on a strong shock arising due to stellar/pulsar winds collision. The brightness of the GeV flare is explained in our model as a beaming effect of the energy released in a cone oriented, during the time of the flare, in the direction of the observer.


Sign in / Sign up

Export Citation Format

Share Document