Lattice Boltzmann Simulation to Study Multiple Bubble Dynamics

Author(s):  
Amit Gupta ◽  
Ranganathan Kumar

Lattice Boltzmann method (LBM) has been used in this study to understand the behavior of bubble motion and bubble coalescence in liquids. For a fully periodic domain, bubble dynamics and shape for a single bubble and multiple bubbles are dependent on Eotvos number, Reynolds number and Morton number. Drag coefficient for single bubble motion under buoyancy has been computed and compared with existing correlations provided in terms of the flow parameters. For multiple bubbles, the bubble dynamics is dictated by vortex pattern of the leading bubble, which allows the bubbles to coalesce. Such simulations have also been run for different configurations of the initial bubble distribution for both in-line and staggered bubble configuration to show the effect of vortex shedding on the oscillatory motion of the bubbles.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Deming Nie ◽  
Jianzhong Lin ◽  
Limin Qiu ◽  
Xiaobin Zhang

The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.


2015 ◽  
Vol 26 (03) ◽  
pp. 1550031 ◽  
Author(s):  
Merlin Ngachin ◽  
Rinaldo G. Galdamez ◽  
Seckin Gokaltun ◽  
Michael C. Sukop

This study describes the behavior of bubbles rising under gravity using the Shan and Chen-type multicomponent multiphase lattice Boltzmann method (LBM) [X. Shan and H. Chen, Phys. Rev. E47, 1815 (1993)]. Two-dimensional (2D) single bubble motions were simulated, considering the buoyancy effect for which the topology of the bubble was characterized by the nondimensional Eötvös (Eo), and Morton (M) numbers. In this study, a new approach based on the "effective buoyancy" was adopted and proven to be consistent with the expected bubble shape deformation. This approach expands the range of effective density differences between the bubble and the liquid that can be simulated. Based on the balance of forces acting on the bubble, it can deform from spherical to ellipsoidal shape with skirts appearing at high Eo number. A benchmark computational case for qualitative and quantitative validation was performed using COMSOL Multiphysics based on the level set method. Simulations were conducted for 1 ≤ Eo ≤ 100 and 3 × 10-6≤ M ≤ 2.73 × 10-3. Interfacial tension was checked through simulations without gravity, where Laplace's law was satisfied. Finally, quantitative analyses based on the terminal rise velocity and the degree of circularity was performed for various Eo and M values. Our results were compared with both the theoretical shape regimes given in literature and available simulation results.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
L. El Moutaouakil ◽  
Z. Zrikem ◽  
A. Abdelbaki

Laminar natural convection in a water filled square enclosure containing at its center a horizontal hexagonal cylinder is studied by the lattice Boltzmann method. The hexagonal cylinder is heated while the walls of the cavity are maintained at the same cold temperature. Two orientations are treated, corresponding to two opposite sides of the hexagonal cross-section which are horizontal (case I) or vertical (case II). For each case, the results are presented in terms of streamlines, isotherms, local and average convective heat transfers as a function of the dimensionless size of the hexagonal cylinder cross-section (0.1≤B≤0.4), and the Rayleigh number (103≤Ra≤106).


2015 ◽  
pp. 157-168
Author(s):  
Natasa Lukic ◽  
Predrag Tekic ◽  
Jelena Radjenovic ◽  
Ivana Sijacki

The present study is concerned with two-sided lid-driven incompressible flow in rectangular, deep cavities applying lattice Boltzmann method. After validating the code for the square cavity, solutions for cavities with an aspect ratio 1.5 and 4 were obtained for the Reynolds numbers of 100, 400, 1000 and 3200. The influence of the Reynolds number and aspect ratio on the flow pattern and on the characteristics of vortices inside the cavity was studied. Symmetric flow pattern was obtained for all investigated cases. The middle of the cavity is mostly influenced by the increase in the aspect ratio. Critical aspect ratio, at which the birth of a primary vortex in the middle of the cavity takes place, was determined to be between 2.7 and 2.725.


2021 ◽  
Vol 321 ◽  
pp. 01014
Author(s):  
Makoto Sugimoto ◽  
Tatsuya Miyazaki ◽  
Zelin Li ◽  
Masayuki Kaneda ◽  
Kazuhiko Suga

Stator coils of automobiles in operation generate heat and are cooled by a coolant poured from above. Since the behavior characteristic of the coolant poured on the coils is not clarified yet due to its complexity, the three-dimensional two-phase flow simulation is conducted. In this study, as a steppingstone to the simulation of the liquid falling on the actual coils, the coils are modelled with horizontal rectangular pillar arrays whose governing parameters can be easily changed. The two-phase flows are simulated using the lattice Boltzmann method and the phase-field model, and the effects of the governing parameters, such as the physical properties of the cooling liquid, the wettability, and the gap between the pillars, on the wetting area are investigated. The results show that the oil tends to spread across the pillars because of its high viscosity. Moreover, the liquid spreads quickly when the contact angle is small. In the case that the pillars are stacked, the wetting area of the inner pillars is larger than that of the exposed pillars.


Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


Author(s):  
Nishitha Thummala ◽  
Dimitrios V. Papavassiliou

This work presents a Lagrangian approach to simulate convective heat transfer in small scales. The fully developed flow field, simulated by a Lattice Boltzmann Method, is combined with Lagrangian tracking of thermal markers to determine the behavior of an instantaneous scalar line source located at the wall of a channel. The resulting probability density functions are used to calculate the behavior of continuous line sources of heat at the wall of the channel, as well as the temperature for the case of constant temperature or constant heat flux from the wall. This method is resourceful in terms of computational efficiency, in that it can be used to simulate various thermal boundary conditions and Prandtl number fluids with a single flow field resulting from a Lattice Boltzmann simulation.


Author(s):  
Keqiang Xing ◽  
Yong Tao

The lattice Boltzmann method (LBM) as a relatively new numerical scheme has recently achieved considerable success in simulating fluid flows and associated transport phenomena. However, application of this method to heat transfer problems has been at a stage of infancy. In this work, a thermal lattice Boltzmann model is employed to simulate a two-dimensional, steady flow in a symmetric bifurcation under constant temperature and constant heat flux boundary conditions. The bifurcation effects on the heat transfer and fluid flow are investigated and comparisons are made with the straight tube. Also, different bifurcation angles are simulated and the results are compared with the work of the other researchers.


2020 ◽  
Vol 15 (3) ◽  
pp. 443-449
Author(s):  
Zhang Shusheng ◽  
Lu Hao ◽  
Zhang Li-Zhi ◽  
Riffat Saffa ◽  
Ure Zafer ◽  
...  

Abstract In this paper, oblique impact of a single rain droplet on super-hydrophobic surface with randomly distributed rough structures was investigated by lattice Boltzmann method. The effects of the impact angle of the droplet as well as the skewness and kurtosis of rough surface on the bouncing ability of the droplet were in this paper. It was found that the oblique impact can effectively reduce the contact time in the process of droplet bouncing off, because the energy consumption caused by the pinning effect is reduced. Moreover, the contact time most possibly reaches the shortest when the impact angle is 45°. Decreasing the skewness and keeping the kurtosis around 4.0 can enhance the bouncing ability during the droplet oblique impact on randomly distributed rough surfaces. The results are useful for the design of building structures.


Sign in / Sign up

Export Citation Format

Share Document