Probing Bacterial Flagellar Polymorphism in Various Fluidic Environments Using Solid-State Sub-Micropores

Author(s):  
Rafael Mulero ◽  
William R. Hesse ◽  
Liang Wu ◽  
Min Jun Kim

A novel method for the detection of an assortment of environmental conditions in a microfluidic system using bacterial flagella and submicro-scale solid state pores is presented. Differences in various environmental conditions stimulate the polymorphic helix structure of Salmonella typhimurium flagella to transform to its lowest energetic conformation. By measuring the ionic current blockage (resistive pulse) as flagella electrophoretically translocate a submicro-scale pore, detection of the polymorphic state of flagella corresponding to the conditions of the environmental stimuli is possible. We test the viability of this method using purified depolymerized and repolymerized S. Typhimurium flagella and a high resolution electrical signal readout sub-micropore-based detection system.

Author(s):  
Rafael Mulero ◽  
Alejandro Moraga ◽  
Min Jun Kim

A novel method for detecting and configuring bacteria using a micro-scale pore is presented. The method distinguishes between different species of bacteria by measuring the ionic current blockage (resistive pulse) as bacteria electrophoretically translocate the micro-pore. Both wild-type flagellated (HCB 33) and non-flagellated Escherichia coli (HCB 5), and Polystyrene microbeads were used in this study to demonstrate the efficacy of this method. High resolution electrical signal readout enabled discrimination of the orientation of both non-flagellated and peritrichously flagellated bacteria as they move through the solid-state pore.


Nanoscale ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 4190-4197 ◽  
Author(s):  
Makusu Tsutsui ◽  
Kazumichi Yokota ◽  
Tomoko Nakada ◽  
Akihide Arima ◽  
Wataru Tonomura ◽  
...  

Si compositions strongly affect the single-particle sensitivity of solid-state nanopore sensors by the capacitance effect to retard resistive pulse signals.


1997 ◽  
Vol 481 ◽  
Author(s):  
Matthew T. Johnson ◽  
Shelley R. Gilliss ◽  
C. Barry Carter

ABSTRACTThin films of In2O3 and Fe2O3 have been deposited on (001) MgO using pulsed-laser deposition (PLD). These thin-film diffusion couples were then reacted in an applied electric field at elevated temperatures. In this type of solid-state reaction, both the reaction rate and the interfacial stability are affected by the transport properties of the reacting ions. The electric field provides a very large external driving force that influences the diffusion of the cations in the constitutive layers. This induced ionic current causes changes in the reaction rates, interfacial stability and distribution of the phases. Through the use of electron microscopy techniques the reaction kinetics and interface morphology have been investigated in these spinel-forming systems, to gain a better understanding of the influence of an electric field on solid-state reactions.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3577
Author(s):  
Zbigniew Stempien ◽  
Mohmmad Khalid ◽  
Marcin Kozanecki ◽  
Paulina Filipczak ◽  
Angelika Wrzesińska ◽  
...  

In this work, we propose a novel method for the preparation of polypyrrole (PPy) layers on textile fabrics using a reactive inkjet printing technique with direct freezing of inks under varying temperature up to −16 °C. It was found that the surface resistance of PPy layers on polypropylene (PP) fabric, used as a standard support, linearly decreased from 6335 Ω/sq. to 792 Ω/sq. with the decrease of polymerization temperature from 23 °C to 0 °C. The lowest surface resistance (584 Ω/sq.) of PPy layer was obtained at −12 °C. The spectroscopic studies showed that the degree of the PPy oxidation as well as its conformation is practically independent of the polymerization temperature. Thus, observed tendences in electrical conductivity were assigned to change in PPy layer morphology, as it is significantly influenced by the reaction temperature: the lower the polymerization temperature the smoother the surface of PPy layer. The as-coated PPy layers on PP textile substrates were further assembled as the electrodes in symmetric all-solid-state supercapacitor devices to access their electrochemical performance. The electrochemical results demonstrate that the symmetric supercapacitor device made with the PPy prepared at −12 °C, showed the highest specific capacitance of 72.3 F/g at a current density of 0.6 A/g, and delivers an energy density of 6.12 Wh/kg with a corresponding power density of 139 W/kg.


2019 ◽  
Vol 10 ◽  
pp. 2182-2191 ◽  
Author(s):  
Tushar C Jagadale ◽  
Dhanya S Murali ◽  
Shi-Wei Chu

Nonlinear nanoplasmonics is a largely unexplored research area that paves the way for many exciting applications, such as nanolasers, nanoantennas, and nanomodulators. In the field of nonlinear nanoplasmonics, it is highly desirable to characterize the nonlinearity of the optical absorption and scattering of single nanostructures. Currently, the common method to quantify optical nonlinearity is the z-scan technique, which yields real and imaginary parts of the permittivity by moving a thin sample with a laser beam. However, z-scan typically works with thin films, and thus acquires nonlinear responses from ensembles of nanostructures, not from single ones. In this work, we present an x-scan technique that is based on a confocal laser scanning microscope equipped with forward and backward detectors. The two-channel detection offers the simultaneous quantification for the nonlinear behavior of scattering, absorption and total attenuation by a single nanostructure. At low excitation intensities, both scattering and absorption responses are linear, thus confirming the linearity of the detection system. At high excitation intensities, we found that the nonlinear response can be derived directly from the point spread function of the x-scan images. Exceptionally large nonlinearities of both scattering and absorption are unraveled simultaneously for the first time. The present study not only provides a novel method for characterizing nonlinearity of a single nanostructure, but also reports surprisingly large plasmonic nonlinearities.


Author(s):  
Yixian Wang ◽  
Dengchao Wang ◽  
Michael V. Mirkin

Along with more prevalent solid-state nanopores, glass or quartz nanopipettes have found applications in resistive-pulse and rectification sensing. Their advantages include the ease of fabrication, small physical size and needle-like geometry, rendering them useful for local measurements in small spaces and delivery of nanoparticles/biomolecules. Carbon nanopipettes fabricated by depositing a thin carbon layer on the inner wall of a quartz pipette provide additional means for detecting electroactive species and fine-tuning the current rectification properties. In this paper, we discuss the fundamentals of resistive-pulse sensing with nanopipettes and our recent studies of current rectification in carbon pipettes.


Author(s):  
Jae Jun Park ◽  
Dae Jin Kim ◽  
Byoung Woon Ahn ◽  
Seoung Hwan Lee ◽  
Yoo Min Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document