A Study on Sustainable Energy Sources and its Conversion Systems Towards Development of an Efficient Zero Pollution Novel Air Turbine to Use as Prime-Mover to the Light Vehicle

Author(s):  
Bharat Raj Singh ◽  
Onkar Singh

Greater use of hydrocarbon fuel has led to fast depletion of fossil fuel reserves. This has now become worldwide problem making civilization vulnerable due to paucity of fuel in future. It is also a fact that as civilization is growing the use of transport has become essential part of life. The use of large number of vehicles for transport is contributing to about 70% of total air pollution, creating environmental & ecological imbalances. About 100–150 years old transport technology is totally based on combustions causing higher rate of emission, ultimately depleting the thickness of Ozone layer and causing the global warming. Thus worldwide fast depletion of conventional energy resources necessitates the search of alternatives such as Non-Conventional Energy Sources, Renewable Energy Sources and other Direct Conversion of Energy Sources. This paper deals with study on potential of renewable energy resources and their conversion system with emphasis on development of zero pollution engine for vehicles which may lead to sustainable future.

2016 ◽  
Vol 14 (3) ◽  
pp. 31-45
Author(s):  
Jaunius Jatautas ◽  
Andrius Stasiukynas

Effective development of the legal framework promotes the production of energy from renewable energy sources (RES) that provide an alternative to fossil fuel energy and environmental protection. According to these provisions, the article performs content analysis of the Lithuanian RES legal framework and discloses regulatory grounds and barriers to RES development


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1779
Author(s):  
Syed Rahman ◽  
Irfan Khan ◽  
Khaliqur Rahman ◽  
Sattam Al Otaibi ◽  
Hend I. Alkhammash ◽  
...  

This paper presents a novel, scalable, and modular multiport power electronic topology for the integration of multiple resources. This converter is not only scalable in terms of the integration of multiple renewable energy resources (RES) and storage devices (SDs) but is also scalable in terms of output ports. Multiple dc outputs of a converter are designed to serve as input to the stacking modules (SMs) of the modular multilevel converter (MMC). The proposed multiport converter is bidirectional in nature and superior in terms of functionality in a way that a modular universal converter is responsible for the integration of multiple RES/SDs and regulates multiple dc output ports for SMs of MMC. All input ports can be easily integrated (and controlled), and output ports also can be controlled independently in response to any load variations. An isolated active half-bridge converter with multiple secondaries acts as a central hub for power processing with multiple renewable energy resources that are integrated at the primary side. To verify the proposed converter, a detailed design of the converter-based system is presented along with the proposed control algorithm for managing power on the individual component level. Additionally, different modes of power management (emulating the availability/variability of renewable energy sources (RES)) are exhibited and analyzed here. Finally, detailed simulation results are presented in detail for the validation of the proposed concepts and design process.


Author(s):  
NGO TUYET

The article presents the main steps of model of forming regional cluster of renewable energy sources in Vietnam, including method of evaluating the possibility of creating regional cluster of renewable energy resources in Vietnam. The approbation of model in region Ninh Thuan – Binh Thuan.


2019 ◽  
Vol 3 (1) ◽  
pp. 52
Author(s):  
Hala Abdelmoez Mohamed

As the Egyptian population is increasing at a huge rate, the yearly housing demand is increasing in an equivalent rate. In addition, the whole world is suffering from an energy crises caused by the rapidly increasing consumption of world’s traditional energy resources, so the obvious solution is to go green, and depend much more on renewable energy resources. According to the statistical data available in Egyptian governmental authorities, the accumulated housing demand till 2014 was about 2,400,000 units. On the other hand, the yearly housing supply from private and public sectors is about 150,000 to 200,000 unit, Egyptian authorities declared that at summer 2010 air-conditioning devices increased to reach 3.000.000 ( three million) devices all over Egypt, mostly working from early mornings till 2 am next day to adjust temperatures that reach up to (45C) and more outside buildings to reach (25 C) or less inside. This behavior increased electricity consumption rapidly. Consequently, the electricity consumption rate in Egypt had increased by 13% more than 2009, which exceeds the maximum capacity power of the high dam by 7% to 8%, ministry of electricity announcements declared that to fill that gab we need 3000 megawatts at peak hours which costs the electricity sector up to 16.000.000.000 l.E. Accordingly, a new architectural design concept is proposed (Zero-Energy Housing Unit) to rely on the surrounding environmental conditions and new Green Architecture Techniques in order to provide human comfort based on renewable energy sources, provided that the common current governmental energy sources will be a backup system for the meanwhile.


2021 ◽  
Vol 43 (9) ◽  
pp. 601-613
Author(s):  
Ertugrul Guresci

Objectives : The world is getting more polluted day by day and living conditions are getting harder and harder. The Covid 19 process explains this situation even better. Global warming will show its effect more heavily if measures are not taken. There is a close relationship between global warming and the type and method of energy used. The use of fossil fuels by people pollutes the environment too much, and the use of alternative energy sources is gaining importance instead. Here, the issue of use and management of renewable energy sources comes to the fore. Turkey is a country with rich renewable energy resources and experience in cooperatives. In this study, it is aimed to reveal the current situation and problems of renewable energy cooperatives, which can be a model for managing Turkey’s renewable energy resources.Methods : In the study, a literature review method was used by examining domestic and foreign resources related to renewable energy and renewable energy cooperatives. Some of the data obtained were arranged in tables and used in the study.Results and Discussion : It is very important for Turkey to develop renewable energy resources and increase the share of renewable energy resources among other resources. Because Turkey is a developing country and its population is increasing day by day. It is essential to use renewable energy for the energy need of the increasing population and the least environmental pollution. Within the scope of 2023 targets in Turkey, it is planned to produce 34 thousand MW of hydroelectric, 20 thousand MW of wind energy, solar energy, 5 thousand MW, 1,000 MW of geothermal energy and 1,000 MW of geothermal energy and biomass energy. In order to achieve this goal, it is planned to invest approximately 60 billion dollars in renewable energy sources. Cooperatives are one of the most effective ways in which Turkey can use its renewable energy resources. Because cooperative is a method known to the Turkish society and it would be beneficial to transfer it to the renewable energy field.Conclusion : Turkey is a developing country and its energy needs are increasing day by day. It is very important to use the renewable energy resources it has correctly and in a planned way. In this respect, it should be understood that renewable energy cooperatives are quite compatible with Turkey. Turkey should provide the necessary legal and administrative structure for the development of renewable energy cooperatives and develop it with financial support in order to make its increasing energy needs sustainable.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5482
Author(s):  
Shabir Ahmad ◽  
Israr Ullah ◽  
Faisal Jamil ◽  
DoHyeun Kim

Renewable energy sources are environmentally friendly and cost-efficient. However, the problem with these renewable resources is their heavy reliance on weather conditions. Thus, at times, these solutions are not guaranteed to meet the required demand all the time. For this, hybrid microgrids are introduced, which have a combination of both renewable energy sources and non-renewable energy resources. In this paper, a cost-efficient optimization algorithm is proposed that minimizes the use of non-renewable energy sources. It maximizes the use of renewable energy resources by meeting the demand for utility grids. Real data based on the load and demand of the utility grids in Italy is used, and a system that determines the optimal sizing of the microgrid and a daily plan is introduced to optimize the renewable resources operations. As part of the proposal, the objective function for the operation and planning of the microgrid in such a way to minimize cost is formulated. Moreover, a variant of the PSO algorithm named recurrent PSO is implemented. The recurrent PSO algorithm solves the proposed optimization objective function by minimizing the cost for the installation and working of the microgrid. Afterwards, the energy management system algorithm lays out a plan for the daily operation of the microgrid. The performance of the system is evaluated using different state-of-the-art optimization methods. The proposed work can help minimize the use of diesel generators, which not only saves financial resources but also contributes toward a green environment.


Author(s):  
Suudan Gökçe Gök

The energy sector holds a crucial strategic importance for development and its sustainability. However, the energy reserves in Turkey are insufficient for the increasing energy demand. For this reason, the need for alternative energy sources has emerged. The fact that fossil fuels used in energy production will be exhausted and their damaging effects on the environment has made it inevitable for the world to use renewable energy. In Turkey, the following are the main energy sources used in electricity production: hydraulic sources, brown coal, natural gas, coal and fuel oil. The use of renewable energy sources in electricity production has shown a considerable development in the world over the past few decades. However, these energy resources have yet to be exploited to any large extent in Turkey. In this chapter, the range of potential renewable energy resources available for electricity production in Turkey will be analyzed in order to determine the necessary technical substructure to make these renewable energy resources more attractive.


Author(s):  
Piotr Gradziuk ◽  
Barbara Gradziuk

The main objective of the article is to identify the implications of implementing climate and energy policy for rural areas.Due to their quantitative and qualitative potential, rural areas participate to a significant degree in the achievement of the indicative targets resulting from the climatic package. Thanks to the production of biomass and, increasingly often, energy itself during the 2006-2016 period, the share of RES (renewable energy sources) in the production of primary energy grew twofold from 7.8% to 13.9%. Biomass was the main source, but since 2010 the use of wind and sun in the production of energy has been growing rapidly. Based on the analysis, it can be argued that by 2050 most of the energy and renewable energy resources will be produced in agriculture and rural areas. Implementing the commitments stemming from EU climate and energy policy can be an impetus for rural development.


2019 ◽  
Vol 11 (8) ◽  
pp. 2444 ◽  
Author(s):  
Ming Hu

A comprehensive case study on life-cycle cost analysis (LCCA) was conducted on a two- story education building with a projected 40-year lifespan in College Park, Maryland. The aim of this paper was to (1) create a life cycle assessment model, using an education building to test the model, (2) compare the life cycle cost (LCC) of different renovation scenarios, taking into account added renewable energy resources to achieve the university’s overall carbon neutrality goal, and (3) verify the robustness of the LCC model by conducting sensitivity analysis and studying the influence of different variables. Nine renovation scenarios were constructed by combining six renovation techniques and three renewable energy resources. The LCCA results were then compared to understand the cost-effective relation between implementing energy reduction techniques and renewable energy sources. The results indicated that investing in energy-efficient retrofitting techniques was more cost-effective than investments in renewable energy sources in the long term. In the optimum scenario, renovation and renewable energy, when combined, produced close to a 90% reduction in the life cycle cost compared to the baseline. The payback period for the initial investment cost, including avoided electricity costs, varies from 1.4 to 4.1 years. This suggests that the initial investment in energy-efficient renovation is the primary factor in the LCC of an existing building.


2013 ◽  
Vol 368-370 ◽  
pp. 1254-1261
Author(s):  
Xing Min Liu ◽  
Hong Ren ◽  
Yong Wu ◽  
Liang Yu Guo

In recent years, Chinese Government adopts series of policies and actions to advance the building application of the renewable energy resources. Based on the policies for demonstration projects of application of renewable energy sources to buildings (ARESB) in China, this article discusses the policy systems for the demonstration projects in all aspects, including application and review systems, supervision and administration systems, inspection and assessment systems, and the whole policy systems are based on promoting the advance techniques, practicalities, reasonable economy, demonstration and generalization meaning of ARESB. Based on the actual construction and operation of the demonstration projects, the article also analyzes and evaluates the implementation effects and suitability in different areas concerning each technical type, and then analyzes and evaluates issues existing in the implementation of the policies for the demonstration projects of ARESB, with further policy suggestions provided.


Sign in / Sign up

Export Citation Format

Share Document