A Multiple-Beam Tuning-Fork Gyroscope With High Quality Factors

Author(s):  
Ren Wang ◽  
Shiva Krishna Durgam ◽  
Zhili Hao ◽  
Linda Vahala

This paper reports on the design, fabrication, and testing of a multiple-beam tuning-fork gyroscope featuring high Quality factors (Q). A multiple-beam tuning-fork structure is designed to achieve high Qs in its drive mode and sense mode. The gyroscope is fabricated on a 30μm-thick SOI wafer using a one-mask fabrication process. The measured Qs of the fabricated gyroscope are 162,060 in the drive-mode and 85,168 in the sense mode at an operation frequency of 16.8kHz. Under a frequency split of 6Hz, the prototype device demonstrates a rate sensitivity of 0.02mV/°/sec.

Author(s):  
Ren Wang ◽  
Peng Cheng ◽  
Fei Xie ◽  
Zhili Hao ◽  
Darrin Young

This paper presents the design, fabrication, and experimental results of a multiple-beam tuning-fork gyroscope (MB-TFG). Based on a numerical model of thermoelastic damping, a multiple-beam tuning-fork structure is designed with high Quality factors (Qs) in its two operation modes. A simple mask that defines the device through trenches is employed to implement this MB-TFG design on silicon-on-insulator wafers. The highest measured Qs of the fabricated MB-TFGs in vacuum are 255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. Under a frequency difference of 4Hz between the two modes (operation frequency is 16.8kHz) and a drive-mode vibration amplitude of 3.0μm, the measured rate sensitivity is 80μVPP/°/s with an equivalent impedance of 2.5MΩ. The calculated overall rate resolution of this device is 0.377hr°/√Hz.


2011 ◽  
Vol 166 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Ren Wang ◽  
Peng Cheng ◽  
Fei Xie ◽  
Darrin Young ◽  
Zhili Hao

2009 ◽  
Author(s):  
Ren Wang ◽  
Shiva K. Durgam ◽  
Zhili Hao ◽  
Linda L. Vahala

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Ashfaq Ali ◽  
Naveed Ullah ◽  
Asim Ahmad Riaz ◽  
Muhammad Zeeshan Zahir ◽  
Zuhaib Ali Khan ◽  
...  

Quartz Tuning Fork (QTF) based sensors are used for Scanning Probe Microscopes (SPM), in particular for near-field scanning optical microscopy. Highly sharp Tungsten (W) tips with larger cone angles and less tip diameter are critical for SPM instead of platinum and iridium (Pt/Ir) tips due to their high-quality factor, conductivity, mechanical stability, durability and production at low cost. Tungsten is chosen for its ease of electrochemical etching, yielding high-aspect ratio, sharp tips with tens of nanometer end diameters, while using simple etching circuits and basic electrolyte chemistry. Moreover, the resolution of the SPM images is observed to be associated with the cone angle of the SPM tip, therefore Atomic-Resolution Imaging is obtained with greater cone angles. Here, the goal is to chemically etch W to the smallest possible tip apex diameters. Tips with greater cone angles are produced by the custom etching procedures, which have proved superior in producing high quality tips. Though various methods are developed for the electrochemical etching of W wire, with a range of applications from scanning tunneling microscopy (SPM) to electron sources of scanning electron microscopes, but the basic chemical etching methods need to be optimized for reproducibility, controlling cone angle and tip sharpness that causes problems for the end users. In this research work, comprehensive experiments are carried out for the production of tips from 0.4 mm tungsten wire by three different electrochemical etching techniques, that is, Alternating Current (AC) etching, Meniscus etching and Direct Current (DC) etching. Consequently, sharp and high cone angle tips are obtained with required properties where the results of the W etching are analyzed, with optical microscope, and then with field emission scanning electron microscopy (FE-SEM). Similarly, effects of varying applied voltages and concentration of NaOH solution with comparison among the produced tips are investigated by measuring their cone angle and tip diameter. Moreover, oxidation and impurities, that is, removal of contamination and etching parameters are also studied in this research work. A method has been tested to minimize the oxidation on the surface and the tips were characterized with scanning electron microscope (SEM).


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2494 ◽  
Author(s):  
Xiaoqing Shi ◽  
Yulan Lu ◽  
Bo Xie ◽  
Yadong Li ◽  
Junbo Wang ◽  
...  

This paper presents a resonant pressure microsensor relying on electrostatic excitation and piezoresistive detection where two double-ended tuning forks were used as resonators, enabling differential outputs. Pressure under measurement caused the deformation of the pressure sensitive membrane, leading to stress buildup of the resonator under electrostatic excitation with a corresponding shift of the resonant frequency detected piezoresistively. The proposed microsensor was fabricated by simplified SOI-MEMS technologies and characterized by both open-loop and closed-loop circuits, producing a quality factor higher than 10,000, a sensitivity of 79.44 Hz/kPa and an accuracy rate of over 0.01% F.S. In comparison to the previously reported resonant piezoresistive sensors, the proposed device used single-crystal silicon as piezoresistors, which was featured with low DC biased voltages, simple sensing structures and fabrication steps. In addition, the two double-ended tuning forks were used as resonators, producing high quality factors and differential outputs, which further improved the sensor performances.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 577 ◽  
Author(s):  
Muhammad Saqib ◽  
Muhammad Mubasher Saleem ◽  
Naveed Mazhar ◽  
Saif Awan ◽  
Umar Shahbaz Khan

This paper presents the design and analysis of a multi degree of freedom (DOF) electro-thermally actuated non-resonant MEMS gyroscope with a 3-DOF drive mode and 1-DOF sense mode system. The 3-DOF drive mode system consists of three masses coupled together using suspension beams. The 1-DOF system consists of a single mass whose motion is decoupled from the drive mode using a decoupling frame. The gyroscope is designed to be operated in the flat region between the first two resonant peaks in drive mode, thus minimizing the effect of environmental and fabrication process variations on device performance. The high gain in the flat operational region is achieved by tuning the suspension beams stiffness. A detailed analytical model, considering the dynamics of both the electro-thermal actuator and multi-mass system, is developed. A parametric optimization is carried out, considering the microfabrication process constraints of the Metal Multi-User MEMS Processes (MetalMUMPs), to achieve high gain. The stiffness of suspension beams is optimized such that the sense mode resonant frequency lies in the flat region between the first two resonant peaks in the drive mode. The results acquired through the developed analytical model are verified with the help of 3D finite element method (FEM)-based simulations. The first three resonant frequencies in the drive mode are designed to be 2.51 kHz, 3.68 kHz, and 5.77 kHz, respectively. The sense mode resonant frequency is designed to be 3.13 kHz. At an actuation voltage of 0.2 V, the dynamically amplified drive mode gain in the sense mass is obtained to be 18.6 µm. With this gain, a capacitive change of 28.11   f F and 862.13   f F is achieved corresponding to the sense mode amplitude of 0.15   μ m and 4.5   μ m at atmospheric air pressure and in a vacuum, respectively.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1218 ◽  
Author(s):  
Jianhao Zhang ◽  
Zhiwei Fang ◽  
Jintian Lin ◽  
Junxia Zhou ◽  
Min Wang ◽  
...  

We report the fabrication of crystalline microresonators of high quality (Q) factors with a controllable wedge angle on lithium niobate on insulator (LNOI). Our technique relies on a femtosecond laser assisted chemo-mechanical polish, which allows us to achieve ultrahigh surface smoothness as critically demanded by high Q microresonator applications. We show that by refining the polish parameters, Q factors as high as 4.7 × 107 can be obtained and the wedge angle of the LNOI can be continuously tuned from 9° to 51°.


2018 ◽  
Vol 27 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Shu Jing Liu ◽  
Cong Zhang ◽  
Ruiping Bai ◽  
Xintong Gu ◽  
Hong Da Yin ◽  
...  

We demonstrate the unidirectional reflectionlessness at exceptional points (EPs) and nonreciprocal perfect absorption near EPs based on phase coupling between two photonic crystal cavities (PCCs) in optical waveguide. In our scheme, when distance [Formula: see text][Formula: see text]nm ([Formula: see text][Formula: see text]nm), the reflectivities for forward and backward (backward and forward) directions are closed to [Formula: see text] and [Formula: see text] ([Formula: see text] and [Formula: see text]), respectively, and absorptances of the nonreciprocal perfect absorptions for forward and backward directions are [Formula: see text] and [Formula: see text] with the high quality factors of [Formula: see text] and [Formula: see text], respectively.


Sign in / Sign up

Export Citation Format

Share Document