scholarly journals Fabrication of Crystalline Microresonators of High Quality Factors with a Controllable Wedge Angle on Lithium Niobate on Insulator

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1218 ◽  
Author(s):  
Jianhao Zhang ◽  
Zhiwei Fang ◽  
Jintian Lin ◽  
Junxia Zhou ◽  
Min Wang ◽  
...  

We report the fabrication of crystalline microresonators of high quality (Q) factors with a controllable wedge angle on lithium niobate on insulator (LNOI). Our technique relies on a femtosecond laser assisted chemo-mechanical polish, which allows us to achieve ultrahigh surface smoothness as critically demanded by high Q microresonator applications. We show that by refining the polish parameters, Q factors as high as 4.7 × 107 can be obtained and the wedge angle of the LNOI can be continuously tuned from 9° to 51°.

Author(s):  
Jianhao Zhang ◽  
Zhiwei Fang ◽  
Jintian Lin ◽  
Junxia Zhou ◽  
Min Wang ◽  
...  

We report fabrication of crystalline microresonators of high quality (Q) factors with a controllable wedge angle on lithium niobate on insulator (LNOI). Our technique relies on femtosecond laser assisted chemo-mechanical polish which allows us to achieve ultrahigh surface smoothness as critically demanded by high Q microresonator applications. We show that by refining the polish parameters, Q factors as high as 4.7 × 107 can be obtained and the wedge angle of the LNOI can be continuously tuned from 9° to 51°.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000705-000710 ◽  
Author(s):  
Igor P. Prikhodko ◽  
Brenton R. Simon ◽  
Gunjana Sharma ◽  
Sergei A. Zotov ◽  
Alexander A. Trusov ◽  
...  

We report vacuum packaging procedures for low-stress die attachment and versatile hermetic sealing of resonant MEMS. The developed in-house infrastructure allows for both high and moderate-level vacuum packaging addressing the requirements of various applications. Prototypes of 100 μm silicon-on-insulator Quadruple Mass Gyroscopes (QMGs) were packaged using the developed process with and without getters. Characterization of stand-alone packaged devices with no getters resulted in stable quality factors (Q-factors) of 1000 (corresponding to 0.5 Torr vacuum level), while devices sealed with activated getters demonstrated Q-factors of 1.2 million (below 0.1 mTorr level inside the package). Due to the high Q-factors achieved in this work, we project that the QMG used in this work can potentially reach the navigation-grade performance, potentially bridging the gap between the inertial silicon MEMS and the state-of-the-art fused quartz hemispherical resonator gyroscopes.


2017 ◽  
Vol 11 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zhiwei Fang ◽  
Ni Yao ◽  
Min Wang ◽  
Jintian Lin ◽  
Jianhao Zhang ◽  
...  

2017 ◽  
Vol 9 (4) ◽  
pp. 1-8 ◽  
Author(s):  
Yu Pan ◽  
Guoping Lin ◽  
Souleymane Diallo ◽  
Xianmin Zhang ◽  
Yanne K. Chembo

Author(s):  
John Melcher ◽  
Arvind Raman

The ability to simultaneously map variations in topography and composition (local stiffness, adhesion, charge, hydrophillicity/phobicity, viscoelasticity) of samples in ambient and liquid environments has made dynamic atomic force microscopy (dAFM) a powerful tool for nanoscale metrology. In ambient and vacuum environments, quality factors (Q-factors) of the fundamental resonance are typically large, and the contrast channels in dAFM are relatively well understood. In liquid environments, however, Q-factors are typically low due to cantilever interactions with the surrounding viscous liquid, which introduces a new class of nonlinear dynamics that is accompanied by new contrast channels, such as, higher harmonic amplitudes and phases. In particular, we find that the interpretation of the traditional contrast channels is quite different in low-Q environments compared to high-Q environments. We present a theoretical investigation of the contrast channels in dAFM in the context of frequency modulation and tapping mode dAFM with an emphasis on low-Q environments.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1064 ◽  
Author(s):  
Guanghou Sun ◽  
Sheng Peng ◽  
Xuejin Zhang ◽  
Yongyuan Zhu

Active photonics based on graphene has attracted wide attention for developing tunable and compact optical devices with excellent performances. In this paper, the dynamic manipulation of electromagnetically induced transparency (EIT) with high quality factors (Q-factors) is realized in the optical telecommunication range via the graphene-loaded all-dielectric metasurface. The all-dielectric metasurface is composed of split Si nanocuboids, and high Q-factor EIT resonance stems from the destructive interference between the toroidal dipole resonance and the magnetic dipole resonance. As graphene is integrated on the all-dielectric metasurface, the modulation of the EIT window is realized by tuning the Fermi level of graphene, engendering an appreciable modulation depth of 88%. Moreover, the group velocity can be tuned from c/1120 to c/3390. Our proposed metasurface has the potential for optical filters, modulators, and switches.


2014 ◽  
Vol 22 (12) ◽  
pp. 14792 ◽  
Author(s):  
Jiangxin Song ◽  
Jintian Lin ◽  
Jialei Tang ◽  
Yang Liao ◽  
Fei He ◽  
...  

Author(s):  
Renhong Gao ◽  
Haisu Zhang ◽  
Fang Bo ◽  
Wei Fang ◽  
Zhenzhong Hao ◽  
...  

Abstract Microresonators of ultrahigh quality (Q) factors represent a crucial type of photonic devices aiming at ultra-high spectral resolution, ultra-high sensitivity to the environmental perturbations, and efficient nonlinear wavelength conversions at low threshold pump powers. Lithium niobate on insulator (LNOI) microdisks of high Q factors are particularly attractive due to its large second-order nonlinear coefficient and strong electro-optic property. In this Letter, we break through the long standing bottleneck in achieving the Q factors of LNOI micro-resonators beyond 108, which approaches the intrinsic material absorption limit of lithium niobate (LN). The ultra-high Q factors give rise to a rich family of nonlinear optical phenomena from optical parametric oscillation (OPO) to harmonics generation with unprecedented characteristics including ultra-low pump threshold, high wavelength conversion efficiency, and ultra-broad operation bandwidth. Specifically, the threshold of OPO is measured to be only 19.6 μW, and the absolute conversion efficiency observed in the second harmonic generation reaches 23%. The record-breaking performances of the on-chip ultra-high Q LNOI microresonators will have profound implication for both photonic research and industry.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jintian Lin ◽  
Yingxin Xu ◽  
Zhiwei Fang ◽  
Min Wang ◽  
Jiangxin Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document