Using Excel for the Thermodynamic Analysis of Air-Standard Cycles and Combustion Processes

Author(s):  
Amir Karimi

In an undergraduate course or a course-sequence in thermodynamics mechanical engineering students are introduced to air-standard power cycles, refrigeration cycles, and the fundamentals of combustion processes. The analysis of air-standard thermodynamic cycles or solving problems involving combustion processes requires the evaluation of thermodynamic properties either from ideal gas tables or equations developed based on the assumption of constant specific heats. Many students have a difficult time to distinguish the differences between the two property evaluation methods. Also, solving problems involving power and refrigeration cycles or parametric studies of combustion processes involve several steps of property evaluation and some steps require interpolation of data listed in the thermodynamic property tables. Also solution to problems requiring trial and error iterative procedure makes the solution process tedious and time consuming, if it is done manually. This paper provides several examples to demonstrate the effectiveness of Excel in solving problems involving air-standard cycles and combustion processes.

Estimates for pressures on the surface of a given delta wing at zero incidence in a steady uniform stream of air are obtained by numerically integrating two semi-characteristic forms of equations which govern the inviscid supersonic flow of an ideal gas with constant specific heats. In one form of the equations coordinate surfaces are fixed in space so that the surface of the wing, which has round sonic leading edges, is a coordinate surface. In the other, two families of coordinates are chosen to be stream-surfaces. For each form of the equations, a finite difference method has been used to compute the supersonic flow around the wing. Convergence of the numerical results, as the mesh is refined, is slow near the leading edge of the wing and an extrapolation procedure is used to predict limiting values for the pressures on the surface of the wing at two stations where theoretical and experimental results have been given earlier by another worker. At one station differences between the results given here and the results given earlier are significant. The two methods used here produce consistent values for the pressures on the surface of the wing and, on the basis of this numerical evidence together with other cited numerical results, it is concluded that the pressures given here are close to the true theoretical values.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Md. Moheiminul I. Khan ◽  
Mehrin Chowdhury ◽  
A. S. M. Arifur Rahman Chowdhury ◽  
Jad Aboud ◽  
Norman Love

Abstract This paper presents the results of thermal efficiency of two coal based oxy-combustion thermodynamic cycles that are modeled using aspen plus. The objective of the present study is to perform a parametric analysis, investigating the effect of different recirculation ratios at different pressures on the efficiencies of the cycle named for the company, ENEL, and the thermo energy power system, TIPS, cycles using aspen plus® software. Variables include the flue gas recycle flow rate, the combustor temperature, and the operational pressure. Five recirculation ratios were investigated, ranging from 20% to 75%. It was determined that as the amount of recycled gas into the combustor increased, the thermal efficiency increased for both the TIPS and ENEL cycles. The highest thermal efficiency for TIPS is 37% and for ENEL is 38%, both occurring at a 75% recirculation ratio. After investigation, since combustion temperature and specific heat capacity decreases at higher recirculation ratios, the mass flow rate was the dominant factor that contributes to the increase in thermal efficiency of the cycle. At each recirculation ratio, the effect of pressure is also determined. For ENEL, the increase in cycle efficiency is 10% over the pressure range of 1–12 bar at a recirculation ratio of 20%, while the increase in cycle efficiency is only 1.5% at a higher recirculation ratio of 75%. For TIPS, the cycle efficiency increases by 4% at the recirculation ratio of 20% and increases by 3% at the recirculation ratio of 75% for a pressure range of 50–80 bar.


1993 ◽  
Vol 115 (3) ◽  
pp. 232-236 ◽  
Author(s):  
Z. Yuan ◽  
E. E. Michaelides

Binary-flashing units utilize new types of geothermal power cycles, which may be used with resources of relatively low temperatures (less than 150°C) where other cycles result in very low efficiencies. The thermodynamic cycles for the binary flashing units are combinations of the geothermal binary and flashing cycles. They have most of the advantages of these two conventionally used cycles, but avoid the high irreversibilities associated with some of their processes. Any fluid with suitable thermodynamic properties may be used in the secondary Rankine cycle. At the optimum design conditions binary-flashing geothermal power plants may provide up to 25 percent more power than the conventional geothermal units.


The energy of a gram molecule of an ideal gas can be calculated from the kinetic theory. From this, by the application of the Maxwell-Boltzmann hypothesis, the molecular specific heats at constant volume, S v , of ideal monatomic and diatomic gases are deduced to be 3R /2 and 5R/2 respectively at all temperatures. R is the gas constant per gram molecule = 1⋅985 gm. cal./° C. The corresponding molecular specific heats at constant pressure, S p , can be obtained by the addition of R. In the case of real gases, which obey some form of characteristic equation other than P. V = R. T, it can be shown from thermodynamical considera­tions that the value of S p depends upon the pressure, but as the term involving the pressure also includes the temperature, S p is not independent of the tempera­ture but it increases in value as the temperature is reduced. Assuming the characteristic equation proposed by Callendar, i. e. , v - b ­­= RT/ p - c (where b is the co-volume, c is the coaggregation volume which is a function of the temperature of the form c = c 0 (T 0 /T) n , n being dependent on the nature of the gas), it is easy to show from the relation (∂S p /∂ р ) T = -T(∂ 2 ν /∂Τ 2 ) р , hat S p = S p 0 + n (n + 1) cp /T; and, by combining this with S p – S v = T(∂ p /∂Τ) v (∂ v /∂Τ) p = R(1 + ncp /RT) 2 , the corresponding values of S v can be obtained.


2019 ◽  
Vol 874 ◽  
Author(s):  
Erik Lindborg

We consider a three-dimensional acoustic field of an ideal gas in which all entropy production is confined to weak shocks and show that similar scaling relations hold for such a field as for forced Burgers turbulence, where the shock amplitude scales as $(\unicode[STIX]{x1D716}d)^{1/3}$ and the $p$th-order structure function scales as $(\unicode[STIX]{x1D716}d)^{p/3}r/d$, $\unicode[STIX]{x1D716}$ being the mean energy dissipation per unit mass, $d$ the mean distance between the shocks and $r$ the separation distance. However, for the acoustic field, $\unicode[STIX]{x1D716}$ should be replaced by $\unicode[STIX]{x1D716}+\unicode[STIX]{x1D712}$, where $\unicode[STIX]{x1D712}$ is associated with entropy production due to heat conduction. In particular, the third-order longitudinal structure function scales as $\langle \unicode[STIX]{x1D6FF}u_{r}^{3}\rangle =-C(\unicode[STIX]{x1D716}+\unicode[STIX]{x1D712})r$, where $C$ takes the value $12/5(\unicode[STIX]{x1D6FE}+1)$ in the weak shock limit, $\unicode[STIX]{x1D6FE}=c_{p}/c_{v}$ being the ratio between the specific heats at constant pressure and constant volume.


Author(s):  
Brett A. Bednarcyk ◽  
Jacob Aboudi ◽  
Steven M. Arnold ◽  
Roy M. Sullivan

The polymer spray-on foam insulation used on NASA’s Space Shuttle external fuel tank is analyzed via the high-fidelity generalized method of cells micromechanical model. This model has been enhanced to include internal pore pressure, which is applied as a boundary condition on the internal faces of the foam pores. The pore pressure arises due to both ideal gas expansion during a temperature change as well as outgassing of species from the foam polymer material. Material creep and elastic stiffening are also incorporated via appropriate constitutive models. Due to the lack of reliable properties for the in situ foam polymer material, these parameters are backed out from foam thermomechanical test data. Parametric studies of the effects of key variables (both property-related and microstructural) are presented as is a comparison of model predictions for the thermal expansion behavior of the foam with experimental data.


Author(s):  
Francisco Moraga ◽  
Doug Hofer ◽  
Swati Saxena ◽  
Ramakrishna Mallina

Recently there has been increased interest in the use of carbon dioxide (CO2) in closed loop power cycles. As these power cycles capitalize on the non-ideal gas behavior of CO2, their analysis both at the system level and at the detailed component level requires an advanced equation of state. Commonly used analytical equations of state as BWRS (BenedictWebbRubin equation of State) or Peng-Robinson are known to have high errors near the critical point and are thus unsuitable for the analysis of cycles or components where the flow conditions approach the critical point. An accurate equation of state is required at all phases of the development process from high level cycle calculations to the detailed component CFD. The NIST RefProp software package provides accurate CO2 fluid properties across the thermodynamic space but suffers from high computational over-head. This study is presented in two parts. Part I (this part) of this paper describes an approach to creating a tabular representation of the equation of state that is applicable to any fluid. This approach is applied to generating an accurate, fast and robust tabular representation of the RefProp CO2 properties and an error analysis is performed to meet the accuracy requirements. The paper also discusses two approaches used to define speed of sound in the two-phase region and their sensitivity analysis on the 3D compressor flow. Part II of the paper details the numerical simulations of a supercritical CO2 centrifugal compressor using the tabular approach. This paper shows that table resolution can be tailored to match the accuracy requirements while minimizing the time used to evaluate the tabulated thermo-physical functions. Error analysis are shown to demonstrate the level of accuracy possible with this approach.


1994 ◽  
Vol 274 ◽  
pp. 383-404 ◽  
Author(s):  
Ingemar A. A. Lindblad ◽  
Fritz H. Bark ◽  
Said Zahrai

The linear spin-up problem for a rapidly rotating viscous diffusive ideal gas is considered in the limit of vanishing Ekman number E. Particular attention is given to gases having a large molecular weight. The gas is enclosed in a cylindrical annulus, with flat top and bottom walls, which is rotating around its axis of symmetry with rotation rate Ω. The walls of the container are adiabatic. In a rotating gas (of any molecular weight), the Ekman layers on adiabatic walls are weak, which implies that there is no distinct non-diffusive response of the gas outside the Ekman and Stewartson boundary layers on the timescale E−1/2Ω−1 for spin-up of a homogeneous fluid. For the case of adiabatic walls, it is shown that the spin-up mechanisms due to viscous diffusion and Ekman suction are, from a formal point of view, equally strong. Therefore, the gas will adjust to the increased rotation rate of the container on the diffusive timescale E−1Ω−1. However, if E1/3 [Lt ] γ – 1 [Lt ] 1 and M [siml ] 1, which characterizes rapidly rotating heavy gases (where γ is the ratio of specific heats of the gas and M the Mach number), it is shown that the gas spins up mainly by Ekman suction on the shorter timescale (γ–1)2E−1Ω−1. In such cases, the interior motion splits up into a non-diffusive part of geostrophic character and diffusive boundary layers of thickness (γ – 1) outside the Ekman and Stewartson layers. The motion approaches the steady state of rigid rotation algebraically instead of exponentially as is usually the case for spin-up.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012050
Author(s):  
E R Ramazanov ◽  
A A Kosoy

Abstract New thermodynamic cycles are developed in which the working fluid used cannot be considered as an ideal gas. This applies to oxy-fuel combustion cycles. In these cycles, oxygen is separated from the air prior to combustion. The combustion chamber is supplied with fuel and pure oxygen. The required temperature at the outlet of the combustion chamber is achieved by supplying some other substances from which it is easy to separate the CO2 formed during the combustion of the fuel. Commonly, CO2, or H2O, or their mixture is used as such substances. Thus, there are no exotic substances in the composition of the working fluid, but such a range of parameters is chosen for such cycles that the working fluid at certain points of the cycle can be both gaseous and liquid, or in a supercritical state. To model thermodynamic processes in such cycles, it is unacceptable to use the polytropic equation of ideal gases. A technique for integrating differential equations describing the state of the working fluid is proposed. This technique is based on the presentation of the thermodynamic properties of pure substances that make up the working fluid in the form of spreadsheets. The proposed technique is implemented in a software-computing module.


Sign in / Sign up

Export Citation Format

Share Document