Experimental Investigation of Flow and Heat Transfer Characteristics of Latent Functionally Thermal Fluid in Mini-Tube

Author(s):  
Jinli Lu ◽  
Yingli Hao

An experimental research using the latent functionally thermal fluid of n-hexadecane microcapsules in deionized water was conducted in order to investigate the flow and heat transfer characteristics of microencapsulated phase change material (MEPCM) slurry. Experimental measurements were done for a large region of Reynolds number in the mini-tube with a constant wall heat flux. Experimental measurements were also conducted using deionized water as the working fluid under the same conditions. Some important parameters such as pressure, temperatures of wall and fluid were obtained experimentally. The relationships between pressure drop and mass flow rate, dimensionless outlet temperature of working fluid and Reynolds number, mean convective heat transfer coefficient and Nusselt number and Reynolds number were obtained. Results show that the using of MEPCM particle increases the pressure drop and then close to that of single phase water with increasing mass flow rate. The outlet and wall temperatures decrease 50% comparing with single phase water under the same conditions. The Nusselt number of slurry containing small concentration MEPCM particle is about 2.0–2.3 times greater than that of single phase water in the minitube. The experimental data might be helpful in the design of thermal-energy transportation systems in small scale using MEPCM slurry.

Author(s):  
Rajesh Nimmagadda ◽  
K. Venkatasubbaiah

Laminar forced convection flow of nanofluids in a rectangular micro-channel has been numerically studied. The study is carried out to investigate the flow and heat transfer characteristics of hybrid single walled carbon nanotube (SWCNT) and Copper (Cu) nanofluid in a micro-channel. Hybridization of SWCNT and Cu nanoparticles are varied with different proportions such as 50% - 50%, 70% - 30% and 30% - 70% using sphericity based effective thermal conductivity evaluation. A two-dimensional multiphase mixture model has been developed and the effects of Reynolds number, nanoparticles mixture volume concentration on the flow and heat transfer characteristics of hybrid (SWCNT + Cu) nanofluids are reported. The accuracy of present numerical model has been validated with the experimental and numerical results available in the literature. The results show that the average convective heat transfer coefficient increases with increase in Reynolds number. It is also observed that 1 vol.% hybrid nanofluid (0.7 vol.% SWCNT + 0.3 vol.% Cu) significantly enhances the average convective heat transfer coefficient than that of pure water. Moreover, the multiphase mixture approach showed better enhancement in terms of heat transfer when compared with single phase homogenous model. The study concludes that hybrid nanofluids with suitable volume concentration of carbon (SWCNT) nanoparticles can be used as modern working fluid based on cooling requirement. Further, hybridizing nanoparticles at higher volume concentrations will minimize the working fluid cost and also enhances the heat transfer characteristics in comparison with pure metal based nanofluids.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5485
Author(s):  
Rajendra S. Rajpoot ◽  
Shanmugam. Dhinakaran ◽  
Md. Mahbub Alam

The present study deals with the numerical simulation of mixed convective heat transfer from an unconfined heated square cylinder using nanofluids (Al2O3-water) for Reynolds number (Re) 10–150, Richardson number (Ri) 0–1, and nanoparticles volume fractions (φ) 0–5%. Two-phase modelling approach (i.e., Eulerian-mixture model) is adopted to analyze the flow and heat transfer characteristics of nanofluids. A square cylinder with a constant temperature higher than that of the ambient is exposed to a uniform flow. The governing equations are discretized and solved by using a finite volume method employing the SIMPLE algorithm for pressure–velocity coupling. The thermo-physical properties of nanofluids are calculated from the theoretical models using a single-phase approach. The flow and heat transfer characteristics of nanofluids are studied for considered parameters and compared with those of the base fluid. The temperature field and flow structure around the square cylinder are visualized and compared for single and multi-phase approaches. The thermal performance under thermal buoyancy conditions for both steady and unsteady flow regimes is presented. Minor variations in flow and thermal characteristics are observed between the two approaches for the range of nanoparticle volume fractions considered. Variation in φ affects CD when Reynolds number is varied from 10 to 50. Beyond Reynolds number 50, no significant change in CD is observed with change in φ. The local and mean Nusselt numbers increase with Reynolds number, Richardson number, and nanoparticle volume fraction. For instance, the mean Nusselt number of nanofluids at Re = 100, φ = 5%, and Ri = 1 is approximately 12.4% higher than that of the base fluid. Overall, the thermal enhancement ratio increases with φ and decreases with Re regardless of Ri variation.


2012 ◽  
Vol 16 (2) ◽  
pp. 593-603 ◽  
Author(s):  
M. Nili-Ahmadabadi ◽  
H. Karrabi

This paper will present the results of the experimental investigation of heat transfer in a non-annular channel between rotor and stator similar to a real generator. Numerous experiments and numerical studies have examined flow and heat transfer characteristics of a fluid in an annulus with a rotating inner cylinder. In the current study, turbulent flow region and heat transfer characteristics have been studied in the air gap between the rotor and stator of a generator. The test rig has been built in a way which shows a very good agreement with the geometry of a real generator. The boundary condition supplies a non-homogenous heat flux through the passing air channel. The experimental devices and data acquisition method are carefully described in the paper. Surface-mounted thermocouples are located on the both stator and rotor surfaces and one slip ring transfers the collected temperature from rotor to the instrument display. The rotational speed of rotor is fixed at three under: 300rpm, 900 rpm and 1500 rpm. Based on these speeds and hydraulic diameter of the air gap, the Reynolds number has been considered in the range: 4000<Rez<30000. Heat transfer and pressure drop coefficients are deduced from the obtained data based on a theoretical investigation and are expressed as a formula containing effective Reynolds number. To confirm the results, a comparison is presented with Gazley?s (1985) data report. The presented method and established correlations can be applied to other electric machines having similar heat flow characteristics.


Author(s):  
Heming Yun ◽  
Baoming Chen ◽  
Binjian Chen

Roughness effects on flow and heat transfer in flat microchannels has been numerically simulated by using CFD with fluid-solid conjugate heat transfer techniques, the surface roughness has been modeled through a series triangular toothed roughness cells. In this paper, the influence for roughness on the entrance length of flow and heat transfer has been emphasized, the influence for relative roughness on transitional Reynolds number has been also analyzed at the same time.


Author(s):  
Hui Miao ◽  
Yong Huang ◽  
Fa Xie ◽  
Haigang Chen ◽  
Fang Wang

Liquid laminar flow and heat transfer characteristics for parallel plate micro-channels consisting of many triangle shape hollows to fit with the etching surfaces are investigated numerically in the present paper. The height of the channel is 50μm, with three different relative depths, three relative spacing, and three oblique angles of the triangle surface, respectively. The 2D N-S and energy equations are solved using a commercial CFD code FLUENT6.3. Water is used as the working fluid, and the Reynolds number ranges from 100 to 1500. The global Poiseuille number and average Nusselt number are obtained. It is shown that the dented shapes cause a modest influence in Poiseuille number, but a greater impact on the Nusselt numbers. In addition, both of Po and Nu increase modestly with Re. The local Nusselt numbers are always lower in dented area and larger in planar area of dented roughness microchannels, than that of conventional smooth value. Finally, geometry parameters have modest impact on heat transfer for dented roughness.


Author(s):  
Julian P. Gutierrez ◽  
Alfonso Ortega ◽  
Amador M. Guzman

The flow and heat transfer characteristics of an impinging jet on a perpendicular flat surface are obtained by two dimensional numerical simulations of laminar and transitional flow regimes for the Reynolds number of Re = 300, 350, and 400 for a Prandtl number of Pr = 0.7. A fixed jet to plate spacing of H/W = 5 and a given heat flux on the plate surface are considered. Temporal evolution of velocity and temperature fields, Fourier spectra of the velocity temporal evolution and time average local and global Nusselt numbers are obtained for increasing Reynolds numbers for determining the time depending behavior and its effect on the heat transfer characteristics. Numerical simulation results demonstrate that self-sustained transitional periodic flow regimes arise from a laminar regime, when the Reynolds number is further increased to Re = 400 and that these regimes spread out to the whole domain with similar time dependent characteristics due to the flow incompressibility. Evaluations of time average local and global Nusselt numbers demonstrate the asymmetric Gaussian-type spatial distribution and the increase of both parameters when the flow evolves through the transitional periodic regime, with reasonable increases on the pumping power requirements.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Ji Zhang ◽  
Yanhua Diao ◽  
Yaohua Zhao ◽  
Yanni Zhang

The single-phase flow and heat transfer behaviors of SiC and Al2O3 nanoparticles dispersed in water were studied experimentally in a multiport minichannel flat tube (MMFT). The volume concentrations of the two nanofluids ranged from 0.001% to 1%. Their effective particle sizes, thermal conductivities, and viscosities were also measured. Results indicated that these nanofluids as a working fluid could enhance heat transfer but increase pressure drop and the Nusselt number by up to 85%. The two nanofluids exhibited a common optimal volume concentration of 0.01% for heat transfer. Effective particle size was also found to have a significant effect on heat transfer.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
M. Sheikholeslami ◽  
H. R. Ashorynejad ◽  
G. Domairry ◽  
I. Hashim

The aim of the present paper is to study the flow of nanofluid and heat transfer characteristics between two horizontal plates in a rotating system. The lower plate is a stretching sheet and the upper one is a solid porous plate. Copper (Cu) as nanoparticle and water as its base fluid have been considered. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved analytically using the homotopy analysis method (HAM). Comparison between HAM and numerical solutions results showed an excellent agreement. The results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction, suction/injection parameter, rotation parameter, and Reynolds number. It is shown that the inclusion of a nanoparticle into the base fluid of this problem is capable of causing change in the flow pattern. It is found that for both suction and injection, the heat transfer rate at the surface increases with increasing the nanoparticle volume fraction, Reynolds number, and injection/suction parameter and it decreases with power of rotation parameter.


Sign in / Sign up

Export Citation Format

Share Document