A Methodology for Developing Energy Process Step-Models for Manufacturing on a National Scale

Author(s):  
Nesrin Ozalp

Manufacturing energy flows are characterized by two types of models: an energy process-step model and an energy end-use model. This paper provides a methodology for developing energy process-step models using federal database. Since energy end-use model provides the basis to scale energy process-step model, first, the concept of an energy end-use model is briefly described. Then, a concise methodology to construct the key part of the energy end-use model is given, namely, on-site steam and power generation model. Finally, a thorough methodology to develop energy process-step model showing energy inputs at each step of an industrial process is described by providing reconciliation with the energy end-use model results. An example methodology is provided for nitrogen, oxygen and argon production energy process-step models. Our approach to creating these models has been shown to be applicable to other energy intensive manufacturing industries. When used in conjunction with similar models for other years, these models can be used to identify the changes and trends in energy use.

Author(s):  
Nesrin Ozalp

This paper gives a representative energy process-step model of hydrogen production in the U.S. Chemical Industry based on federal data. There have been prior efforts to create energy process-step models for other industries. However, among all manufacturing industries, creating energy flow models for the U.S. Chemical Industry is the most challenging one due to the complexity of this industry. This paper gives concise comparison of earlier studies and provides thorough description of the methodology to develop energy process-step model for hydrogen production in the U.S. Chemical Industry. Results of the energy process-step model of hydrogen production in the U.S. Chemical Industry show that steam allocations among the end-uses are: 68% to process cooling (steam injection to product combustion gases), 25% to process heating, and 7% to other process use (CO2 converter). The model also shows that the major energy consuming step in hydrogen production is the reformer, which consumes approximately 16 PJ fuel. During the course of this study, the most recent U.S. federal energy database available was for the year 1998. Currently, the most recent available U.S. federal energy database is given for the year 2002 based on the data collected from 15,500 establishments.


Energy ◽  
1996 ◽  
Vol 21 (7-8) ◽  
pp. 667-681 ◽  
Author(s):  
Luis Giraldo ◽  
Barry Hyman

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Nesrin Ozalp

This paper gives a representative energy process-step model of hydrogen production in the U.S. Chemical Industry based on federal data. There have been prior efforts to create energy process-step models for other industries. However, among all manufacturing industries, creating energy flow models for the U.S. Chemical Industry is the most challenging one due to the complexity of this industry. This paper gives concise comparison of earlier studies and provides thorough description of the methodology to develop energy process-step model for hydrogen production in the U.S. Chemical Industry. Results of the energy process-step model of hydrogen production in the U.S. Chemical Industry show that steam allocations among the end-uses are 68% to process cooling (steam injection to product combustion gases), 25% to process heating, and 7% to other process use (CO2 converter). The model also shows that the major energy consuming step in hydrogen production is the reformer, which consumes approximately 16 Peta Joules (PJ) fuels. During the course of this study, the most recent U.S. federal energy database available was for the year 1998. Currently, the most recent available U.S. federal energy database is given for the year 2002 based on the data collected from 15,500 establishments.


Author(s):  
Lindsey Kahn ◽  
Hamidreza Najafi

Abstract Lockdown measures and mobility restrictions to combat the spread of COVID-19 have impacted energy consumption patterns. The overall decline of energy use during lockdown restrictions can best be identified through the analysis of energy consumption by source and end-use sectors. Using monthly energy consumption data, the total 9-months use between January and September for the years 2015–2020 is calculated for each end-use sector (transportation, industrial, residential, and commercial). The cumulative consumption within these 9 months of the petroleum, natural gas, biomass, and electricity energy by the various end-use sectors are compared. The analysis shows that the transportation sector experienced the greatest decline (14.38%). To further analyze the impact of COVID-19 on each state within the USA, the consumption of electricity by each state and each end-use sector in the times before and during the pandemic is used to identify the impact of specific lockdown procedures on energy use. The distinction of state-by-state analysis in this study provides a unique metric for consumption forecasting. The average total consumption for each state was found for the years 2015–2019. The total average annual growth rate (AAGR) for 2020 was used to find a correlation coefficient between COVID-19 case and death rate, population density, and lockdown duration. A correlation coefficient was also calculated between the 2020 AAGR for all sectors and AAGR for each individual end-user. The results show that Indiana had the highest percent reduction in consumption of 10.07% while North Dakota had the highest consumption increase of 7.61%. This is likely due to the amount of industrial consumption relative to other sectors in the state.


2018 ◽  
Vol 10 (8) ◽  
pp. 2816 ◽  
Author(s):  
Jack H. Townsend ◽  
Vlad C. Coroama

Sustainability requires ongoing reform of resource production and consumption to reduce environmental harms. The main way that Information and Communication Technology (ICT) can address these resource impacts is through digital optimization. Spreng found that optimization of an industrial process either increases energy use or accelerates production or consumption. It was assumed that reducing energy use progresses sustainability, whilst accelerating production or consumption to meet market demand is consumerist and generally detrimental to sustainability. In this paper, we argue that there are two important cases in which accelerating economic processes actually has an essential role in enabling sustainability by ICT: (1) when the process drives the production and adoption of an environmentally beneficial product such as a solar panel, often referred to as “cleantech”, or (2) when the process being increased is specific to the Circular Economy, such as recycling, maintenance/refurbishment, and sharing/reuse e.g., car-sharing, ride-sharing and tool-sharing in the Sharing Economy. The opportunities for ICT4S optimization are thus threefold: not just saving resources with efficiency, but also pushing the adoption of cleantech, and pushing the circulation of resources.


Author(s):  
Lindsey Kahn ◽  
Hamidreza Najafi

Abstract Lockdown measures and mobility restrictions implemented to combat the spread of the novel COVID-19 virus have impacted energy consumption patterns, particularly in the United States. A review of available data and literature on the impact of the pandemic on energy consumption is performed to understand the current knowledge on this topic. The overall decline of energy use during lockdown restrictions can best be identified through the analysis of energy consumption by source and end-user breakdown. Using monthly energy consumption data, the total 9-months use between January and September for the years 2015–2020 are calculated for each end-use. The cumulative consumption within these 9 months of the petroleum, natural gas, biomass, and electricity energy by the various end-use sectors are compared to identify a shift in use throughout time with the calculation of the percent change from 2019 to 2020. The analysis shows that the transportation sector experienced the most dramatic decline, having a subsequent impact on the primary energy it uses. A steep decline in the use of petroleum and natural gas by the transportation sector has had an inevitable impact on the emission of carbon dioxide and other air pollutants during the pandemic. Additionally, the most current data for the consumption of electricity by each state and each end-user in the times before and during the pandemic highlights the impact of specific lockdown procedures on energy use. The average total consumption for each state was found for the years 2015–2019. This result is used calculation of yearly growth rate and average annual growth rate in 2020 for each state and end-user. The total average annual growth rate for 2020 was used to find a correlation coefficient between COVID-19 case and death rates as well as population density and lockdown duration. To further examine the relationship a correlation coefficient was calculated between the 2020 average annual growth rate for all sectors and average annual growth rate for each individual end-user.


Author(s):  
Hewitt Crane ◽  
Edwin Kinderman ◽  
Ripudaman Malhotra

The energy industry is one of the largest of the world’s industries and one that directly influences the lives of the vast majority of the world’s population. However, the industry’s day-to-day conduct generally receives minimal public attention. Such exceptional events as an embargo on fuel shipments, a sudden rise in fuel prices, a widespread electricity shortage or outage, the rare nuclear accident, or a massive hurricane that affects oil production do make the national news, of course, and often receive prolonged coverage. Yet the more common events such as refinery fires, oil tanker wrecks, pipeline leaks and explosions, and coal-mine disasters attract the attention of only a relatively few, and then too often only in passing. And while the public attention to its activities can be fleeting, the industry is massive. Its size and influence are often overlooked, and the investments required to produce our needed energy are difficult to calculate. Using Exxon-Mobil, the largest of the petroleum companies, as a model, we estimate that the depreciated capital costs for the production of oil, gas, and chemical products derived from them are about $2.5 trillion per CMO. New investments required could be twice as large. A lack of public knowledge and the consequent lack of political will can only exacerbate our general inability to understand the enormity of rapidly changing the resources and technologies this industry employs. We begin our analysis of the state of the energy industry by first distinguishing between primary and secondary sources of energy. Next we examine the overall production of energy by the different primary sources. We then discuss the production and consumption of energy in different regions across the globe. We also look at the per capita consumption in these regions because it is germane to the discussion in chapter 4 of the projections for future energy use. Finally, because more than 40% of primary energy is converted into secondary sources or energy carriers (mainly electricity) before its end use, we survey the different secondary energy sources and their markets.


Sign in / Sign up

Export Citation Format

Share Document