System Dynamics Experimentation at Home

Author(s):  
Musa K. Jouaneh ◽  
William J. Palm

Most Mechanical Engineering curricula include courses in system dynamics, controls, mechatronics, and vibrations. At most schools, these courses do not have a laboratory component. Even at schools that have such a component, laboratory access is often limited, and thus there is a need to increase students’ laboratory experience. This paper addresses the development and initial testing of instructional material in the form of take-home software and hardware kits that can be used to perform laboratory experiments and measurements at home to illustrate system dynamics concepts. Rather than having students perform an experiment in the university laboratory, the students are given a compact, low cost software and hardware kit with which they can perform an experiment at home using only their PC. The kits are designed so that the experiments can be conducted on a provided experimental setup such as a DC motor/tachometer system or can be used to perform dynamic measurements on engineering systems that are available at home such as motor powered devices and heating/cooling systems. The take-home kit consists of three components. The first component is a hardware interface board that is built around a PIC18F4550 microcontroller which interfaces with the student’s PC and with the experiment hardware. The second component is a Windows based user interface program that is loaded on the student’s PC and is used to run the experiment and collect data. The third component is the actual experimental setup or the sensor system to perform the measurement. Fifty five kits have been fabricated to perform five different experiments. Two of these experiments were tested in two courses in the mechanical engineering department at the University of Rhode Island. The paper discusses the design of the kit components, the details of the experiments, as well the initial experiences gained from using this new approach for laboratory experimentation.

2021 ◽  
Author(s):  
Tania Morimoto ◽  
He Liu ◽  
Cristian Tharin ◽  
Carolyn Sandoval ◽  
Christopher Cassidy ◽  
...  

Author(s):  
Afshin Goharzadeh ◽  
Arman Molki ◽  
Peter Rodgers ◽  
Shrinivas Bojanampati

This paper outlines a proposed low-cost experimental setup for the measurement of two-phase liquid-gas flows in a vertical column. The objective of the test facility is to familiarize students with the challenges in applying measurement techniques to characterize such flows. The test facility incorporates two complementary intrusive and non-intrusive measurement techniques for detecting and studying the dynamics of air bubbles transported in water. The intrusive measurement method uses conductivity probes, while the non-intrusive technique is laser based. For both measurement techniques, details of the data acquisition system and the characteristics of sensors employed are presented. In addition, the teaching strategy is discussed for implementing the use of the proposed two-phase flow experimental setup in a Mechanical Engineering curriculum.


Author(s):  
Joshua Dian ◽  
Sinisa Colic

The robotics stream of the University of TorontoDEEP summer program consistently attracts numer-ous motivated high school students. As instructors,we have developed an extensible low cost platformthat students can construct and enhance over asequence of courses. The platform provides anengaging medium to address many aspects of elec-trical, computer and mechanical engineering whilemaintaining a robotics theme. These include thetheory of electromagnetism, analog and digitalcircuits, software development and ultimately basicmachine learning. Students surveys conducted at thebeginning and end of each course were used to gaugestudent engagement and knowledge before and afterthe courses and provide evidence that the roboticsthemed approach is an eective method for teachinga broad spectrum of engineering material.


Author(s):  
Afshin Goharzadeh ◽  
Arman Molki

This paper outlines a proposed low-cost experimental setup for characterization of surface waves that was designed and fabricated in conjunction with a senior design project. The proposed experimental setup will enhance the student’s learning of surface waves at water-air interface inside an open transparent channel. The experimental study is based on the flow visualization of water waves combined with measurement of water level using a conductance wave height probe. The detail of the data acquisition system and the characteristics of the wave probes are presented. Finally a teaching strategy for implementing the water wave experimental setup in a Mechanical Engineering curriculum is discussed.


2021 ◽  
Vol 2 ◽  
Author(s):  
Philipp Maruhn

Virtual Reality is commonly applied as a tool for analyzing pedestrian behavior in a safe and controllable environment. Most such studies use high-end hardware such as Cave Automatic Virtual Environments (CAVEs), although, more recently, consumer-grade head-mounted displays have also been used to present these virtual environments. The aim of this study is first of all to evaluate the suitability of a Google Cardboard as low-cost alternative, and then to test subjects in their home environment. Testing in a remote setting would ultimately allow more diverse subject samples to be recruited, while also facilitating experiments in different regions, for example, investigations of cultural differences. A total of 60 subjects (30 female and 30 male) were provided with a Google Cardboard. Half of the sample performed the experiment in a laboratory at the university, the other half at home without an experimenter present. The participants were instructed to install a mobile application to their smartphones, which guided them through the experiment, contained all the necessary questionnaires, and presented the virtual environment in conjunction with the Cardboard. In the virtual environment, the participants stood at the edge of a straight road, on which two vehicles approached with gaps of 1–5 s and at speeds of either 30 or 50 km/h. Participants were asked to press a button to indicate whether they considered the gap large enough to be able to cross safely. Gap acceptance and the time between the first vehicle passing and the button being pressed were recorded and compared with data taken from other simulators and from a real-world setting on a test track. A Bayesian approach was used to analyze the data. Overall, the results were similar to those obtained with the other simulators. The differences between the two Cardboard test conditions were marginal, but equivalence could not be demonstrated with the evaluation method used. It is worth mentioning, however, that in the home setting with no experimenter present, significantly more data points had to be treated or excluded from the analysis.


Author(s):  
H. O. Colijn

Many labs today wish to transfer data between their EDS systems and their existing PCs and minicomputers. Our lab has implemented SpectraPlot, a low- cost PC-based system to allow offline examination and plotting of spectra. We adopted this system in order to make more efficient use of our microscopes and EDS consoles, to provide hardcopy output for an older EDS system, and to allow students to access their data after leaving the university.As shown in Fig. 1, we have three EDS systems (one of which is located in another building) which can store data on 8 inch RT-11 floppy disks. We transfer data from these systems to a DEC MINC computer using “SneakerNet”, which consists of putting on a pair of sneakers and running down the hall. We then use the Hermit file transfer program to download the data files with error checking from the MINC to the PC.


Author(s):  
Olga Mikhaylovna Tikhonova ◽  
Alexander Fedorovich Rezchikov ◽  
Vladimir Andreevich Ivashchenko ◽  
Vadim Alekseevich Kushnikov

The paper presents the system of predicting the indicators of accreditation of technical universities based on J. Forrester mechanism of system dynamics. According to analysis of cause-and-effect relationships between selected variables of the system (indicators of accreditation of the university) there was built the oriented graph. The complex of mathematical models developed to control the quality of training engineers in Russian higher educational institutions is based on this graph. The article presents an algorithm for constructing a model using one of the simulated variables as an example. The model is a system of non-linear differential equations, the modelling characteristics of the educational process being determined according to the solution of this system. The proposed algorithm for calculating these indicators is based on the system dynamics model and the regression model. The mathematical model is constructed on the basis of the model of system dynamics, which is further tested for compliance with real data using the regression model. The regression model is built on the available statistical data accumulated during the period of the university's work. The proposed approach is aimed at solving complex problems of managing the educational process in universities. The structure of the proposed model repeats the structure of cause-effect relationships in the system, and also provides the person responsible for managing quality control with the ability to quickly and adequately assess the performance of the system.


2020 ◽  
Author(s):  
Joseph Molloy ◽  
Christopher Tchervenkov ◽  
Thomas Schatzmann ◽  
Beaumont Schoeman ◽  
Beat Hintermann ◽  
...  

To slow down the spread of the Coronavirus, the population has been instructed to stay<br>at home if possible. This measure consequently has a major impact on our daily mobility<br>behaviour. But who is being affected, and how? The MOBIS-COVID-19 research project,<br>an initiative of ETH Zurich and the University of Basel, is a continuation of the original<br>MOBIS study. The aim of the project is to get a picture of how the crisis is affecting<br>mobility and everyday life in Switzerland.


2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 726
Author(s):  
Francisco J. Gómez-Uceda ◽  
José Ramirez-Faz ◽  
Marta Varo-Martinez ◽  
Luis Manuel Fernández-Ahumada

In this work, an omnidirectional sensor that enables identification of the direction of the celestial sphere with maximum solar irradiance is presented. The sensor, based on instantaneous measurements, functions as a position server for dual-axis solar trackers in photovoltaic plants. The proposed device has been developed with free software and hardware, which makes it a pioneering solution because it is open and accessible as well as capable of being improved by the scientific community, thereby contributing to the rapid advancement of technology. In addition, the device includes an algorithm developed ex professo that makes it possible to predetermine the regions of the celestial sphere for which, according to the geometric characteristics of the PV plant, there would be shading between the panels. In this way, solar trackers do not have to locate the Sun’s position at all times according to astronomical models, while taking into account factors such as shadows or cloudiness that also affect levels of incident irradiance on solar collectors. Therefore, with this device, it is possible to provide photovoltaic plants with dual-axis solar tracking with a low-cost device that helps to optimise the trajectory of the trackers and, consequently, their radiative capture and energy production.


Sign in / Sign up

Export Citation Format

Share Document