Optothermal Analyte Manipulation With Temperature Gradient Focusing

Author(s):  
M. Akbari ◽  
M. Bahrami ◽  
D. Sinton

An optothermal analyte preconcentration method is introduced in this work based on temperature gradient focusing. The present approach offers a flexible, noncontact technique for focusing and transporting of analytes. Here, we use a commercial video projector and an optical system to generate heat and control the heat source position, size and power. This heater is used to focus a sample model analyte, fluorescent dye, at an arbitrary location along the microchannel. Optothermal manipulation of the focused band was demonstrated by projecting a series of images with a moving light band.

Author(s):  
Zhengwei Ge ◽  
Chun Yang

Microfluidic concentration of sample species is achieved using the temperature gradient focusing (TGF) in a microchannel with a step change in the cross-section under a pure direct current (DC) field or a combined alternating current (AC) and DC electric field. Experiments were carried out to study the effects of applied voltage, buffer concentration and channel size on sample concentration in the TGF processes. These effects were analyzed and summarized using a dimensionless Joule number that is introduced in this study. In addition, Joule number effect in the Poly-dimethylsiloxane (PDMS)/PDMS microdevice was compared with the PDMS/Glass microdevice. A more than 450-fold concentration enhancement was obtained within 75 seconds in the PDMS/PDMS microdevice. Results also showed that the high frequency AC electric field which contributes to produce the temperature gradient and reduces the required DC voltage for the sample concentration. The lower DC voltage has generated slower electroosmotic flow (EOF), which reduces the backpressure effect associated with the finite reservoir size. Finally, a more than 2500-fold concentration enhancement was obtained within 14 minutes in the PDMS/PDMS microdevice, which was a great achievement in this TGF technique using inherent Joule heating effects.


2001 ◽  
Vol 124 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Sherin M. Alex ◽  
Prabhamani R. Patil

The convective instability of a horizontal fluid-saturated anisotropic porous layer, with internal heat source and inclined temperature gradient, subject to a gravity field varying with distance in the layer, is investigated. A linear stability analysis is performed and the resulting eigenvalue problem solved using a Galerkin technique. In the absence of an inclined temperature gradient, an increase in the variable gravity parameter above −1 destabilizes the system. In its presence interesting developments occur. An increase in the heat generation destabilizes the system when the variable gravity parameter is nonnegative. When it is negative the opposite effect is seen.


Author(s):  
Amitava Dutta ◽  
Apurba Kumar Santra ◽  
Ranjan Ganguly

Abstract We present a detailed numerical analysis of electrophoresis induced concentration of a bio-analyte facilitated by temperature gradient focusing in a phosphate buffer solution via Joule heating inside a converging-diverging microchannel. The purpose is to study the effects of frequency of AC field and channel width variation on the concentration of target analyte. We tune the buffer viscosity, conductivity and electrophoretic mobility of the analyte such that the electrophoretic velocity of the analyte locally balances the electroosmotic flow of the buffer, resulting in a local build-up of the analyte concentration in a target region. An AC field is superimposed on the applied DC field within the microchannel in such a way that the back pressure effect is minimized, resulting in minimum dispersion and high concentration of the target analyte. Axial transport of fluorescein-Na in the phosphate buffer solution is controlled by inducing temperature gradient through Joule heating. The technique leverages the fact that the buffer's ionic strength and viscosity depends on temperature, which in turn guides the analyte transport. A numerical model is proposed and a finite element-based solution of the coupled electric field, mass, momentum, energy and species equations are carried out. Simulation predict peak of 670-fold concentration of fluorescein-Na is achieved. The peak concentration is found to increase sharply as the channel throat width, while the axial spread of concentrated analyte increases at lower frequency of AC field. The results of the work may improve the design of micro concentrator.


2018 ◽  
Vol 242 ◽  
pp. 01022
Author(s):  
Liu Heping ◽  
Sun Fenger ◽  
Yibo Fenger ◽  
Cheng Shaolei ◽  
Liu Bin

In this paper, the finite element simulation of GH4169 high temperature alloy by selective laser melting was carried out, and the microstructure was analyzed by experiments. The results show that the shape of the temperature field cloud formed by the laser heat source is different from the shape of the theoretical model, but is in the shape of the ellipse. The temperature gradient at the front end of the molten pool is larger than that of the back end of the molten pool, and the isotherm of the front end of the molten pool is more intensive. The temperature of the substrate is less affected by the temperature gradient. The temperature gradient of the front end of the melting pool is larger than the back end of the molten pool, and the temperature field of selective laser melting is like a meteor with trailing tail. In the laser heat source, the temperature isotherm is the most dense and the temperature gradient is maximum. The relative effect of mechanical properties of δ phase is very complex. When the phase is precipitated by widmanstatten structure, it is easy to produce stress concentration as a source of cracks


2008 ◽  
Vol 80 (1) ◽  
pp. 172-178 ◽  
Author(s):  
Matthew S. Munson ◽  
J. Mark Meacham ◽  
Laurie E. Locascio ◽  
David Ross

2013 ◽  
Vol 135 (9) ◽  
Author(s):  
M. Gao ◽  
L. Gui ◽  
J. Liu

Temperature gradient focusing (TGF) is a highly efficient focusing technique for the concentration and separation of charged analytes in microfluidic channels. The design of an appropriate temperature gradient is very important for the focusing efficiency. In this study, we proposed a new technique to generate the temperature gradient. This technique utilizes a microchannel filled with liquid-metal as an electrical heater in a microfluidic chip. By applying an electric current, the liquid-metal heater generates Joule heat, forming the temperature gradient in the microchannel. To optimize the temperature gradient and find out the optimal design for the TGF chip, numerical simulations on four typical designs were studied. The results showed that design 1 can provide a best focusing method, which has the largest temperature gradient. For this best design, the temperature is almost linearly distributed along the focusing microchannel. The numerical simulations were then validated both theoretically and experimentally. The following experiment and theoretical analysis on the best design also provide a useful guidance for designing and fabricating the liquid-metal based TGF microchip.


Sign in / Sign up

Export Citation Format

Share Document