Effects of Gears, Bearings, and Housings on Gearbox Transmission Shafting Resonances

Author(s):  
Stephen A. Hambric ◽  
Micah R. Shepherd ◽  
Robert L. Campbell

Gear noise, comprised of tones centered around gear meshing frequencies, is transmitted through driveshafts, bearings, and transmission housings. Gear noise transmission is amplified, sometimes strongly, by modes of vibration of the shafting. The shafts of the input and output gears vibrate like beams at low to mid frequencies. The resonance frequencies and vibration patterns of these beam-like modes depend strongly on the shaft boundary conditions, which in turn depend on the impedances of the bearings, and of the transmission housing. In this paper, we present simulated and measured modes of the input and output shafts of a single stage spur gear system mounted in a rectangular metal gearbox. The impedances of the gears, bearings, and housing are added in sequence and the effects on the fundamental mode shapes and frequencies are shown. The bearing impedances have the largest effects on the shafting modes, increasing the resonance frequencies significantly, along with spreading the frequencies of similar mode types. Including the housing impedances at the bearing locations reduces slightly the spread of shaft mode frequencies.

1998 ◽  
Vol 65 (4) ◽  
pp. 1022-1031 ◽  
Author(s):  
S. Natsiavas ◽  
J. L. Beck

The dynamic response of a general class of continuous linear vibrating systems is analyzed which possess damping properties close to those resulting in classical (uncoupled) normal modes. First, conditions are given for the existence of classical modes of vibration in a continuous linear system, with special attention being paid to the boundary conditions. Regular perturbation expansions in terms of undamped modeshapes are then utilized for analyzing the eigenproblem as well as the vibration response of almost classically damped systems. The analysis is based on a proper splitting of the damping operators in both the field equations and the boundary conditions. The main advantage of this approach is that it allows application of standard modal analysis methodologies so that the problem is reduced to that of finding the frequencies and mode shapes of the corresponding undamped system. The approach is illustrated by two simple examples involving rod and beam vibrations.


2021 ◽  
pp. 107754632110276
Author(s):  
Jun-Jie Li ◽  
Shuo-Feng Chiu ◽  
Sheng D Chao

We have developed a general method, dubbed the split beam method, to solve Euler–Bernoulli equations for cantilever beams under multiple loading conditions. This kind of problem is, in general, a difficult inhomogeneous eigenvalue problem. The new idea is to split the original beam into two (or more) effective beams, each of which corresponds to one specific load and bears its own Young’s modulus. The mode shape of the original beam can be obtained by linearly superposing those of the effective beams. We apply the split beam method to simulating mechanical responses of an atomic force microscope probe in the “dynamical” operation mode, under which there are a stabilizing force at the positioner and a point-contact force at the tip. Compared with traditional analytical or numerical methods, the split beam method uses only a few number of basis functions from each effective beam, so a very fast convergence rate is observed in solving both the resonance frequencies and the mode shapes at the same time. Moreover, by examining the superposition coefficients, the split beam method provides a physical insight into the relative contribution of an individual load on the beam.


2007 ◽  
Vol 129 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Erick Ogam ◽  
Armand Wirgin ◽  
Z. E. A. Fellah ◽  
Yongzhi Xu

The potentiality of employing nonlinear vibrations as a method for the detection of osteoporosis in human bones is assessed. We show that if the boundary conditions (BC), relative to the connection of the specimen to its surroundings, are not taken into account, the method is apparently unable to differentiate between defects (whose detection is the purpose of the method) and nonrelevant features (related to the boundary conditions). A simple nonlinear vibration experiment is described which employs piezoelectric transducers (PZT) and two idealized long bones in the form of nominally-identical drinking glasses, one intact, but in friction contact with a support, and the second cracked, but freely-suspended in air. The nonlinear dynamics of these specimens is described by the Duffing oscillator model. The nonlinear parameters recovered from vibration data coupled to the linear phenomena of mode splitting and shifting of resonance frequencies, show that, despite the similar soft spring behavior of the two dynamic systems, a crack is distinguishable from a contact friction BC. The frequency response of the intact glass with contact friction BC is modeled using a direct steady state finite element simulation with contact friction.


Author(s):  
U. Yuceoglu ◽  
O. Gu¨vendik ◽  
V. O¨zerciyes

In this present study, the “Free Bending Vibrations of a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap in Mindlin Plates or Panels” are theoretically analyzed and are numerically solved in some detail. The “plate adherends” and the upper and lower “doubler plates” of the “Bonded Joint” system are considered as dissimilar, orthotropic “Mindlin Plates” joined through the dissimilar upper and lower very thin adhesive layers. There is a symmetrically and centrally located “Gap” between the “plate adherends” of the joint system. In the “adherends” and the “doublers” of the “Bonded Joint” assembly, the transverse shear deformations and the transverse and rotary moments of inertia are included in the analysis. The relatively very thin adhesive layers are assumed to be linearly elastic continua with transverse normal and shear stresses. The “damping effects” in the entire “Bonded Joint” system are neglected. The sets of the dynamic “Mindlin Plate” equations of the “plate adherends”, the “double doubler plates” and the thin adhesive layers are combined together with the orthotropic stress resultant-displacement expressions in a “special form”. This system of equations, after some further manipulations, is eventually reduced to a set of the “Governing System of the First Order Ordinary Differential Equations” in terms of the “state vectors” of the problem. Hence, the final set of the aforementioned “Governing Systems of Equations” together with the “Continuity Conditions” and the “Boundary conditions” facilitate the present solution procedure. This is the “Modified Transfer Matrix Method (MTMM) (with Interpolation Polynomials). The present theoretical formulation and the method of solution are applied to a typical “Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap”. The effects of the relatively stiff (or “hard”) and the relatively flexible (or “soft”) adhesive properties, on the natural frequencies and mode shapes are considered in detail. The very interesting mode shapes with their dimensionless natural frequencies are presented for various sets of boundary conditions. Also, several parametric studies of the dimensionless natural frequencies of the entire system are graphically presented. From the numerical results obtained, some important conclusions are drawn for the “Bonded Joint System” studied here.


Author(s):  
Günther Walz ◽  
Werner Krebs ◽  
Stefan Hoffmann ◽  
Hans Judith

To get a better understanding of the formation of thermoacoustic oscillations in an annular gasturbine combustor, an analysis of the acoustic eigenmodes has been conducted using the Finite Element (FE) method. The influence of different boundary conditions and a space dependent velocity of sound has been investigated. The boundary conditions actually define the eigenfrequency spectrum. Hence, it is crucial to know e.g. the burner impedance. In case of the combustion system without significant mixing air addition considered in this paper, the space dependence of the velocity of sound is of minor importance for the eigenfrequency spectrum leading to a maximum deviation of only 5% in the eigenvalues. It is demonstrated that the efficiency of the numerical eigenvalue analysis can be improved by making use of symmetry, by splitting the problem into several steps with alternate boundaries conditions, and by choosing the shift frequency ωs in the range of frequencies one is interested in.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


Author(s):  
Igor Orynyak ◽  
Yaroslav Dubyk

Simple approximate formulas for the natural frequencies of circular cylindrical shells are presented for modes in which transverse deflection dominates. Based on the Donnell-Mushtari thin shell theory the equations of motion of the circular cylindrical shell are introduced, using Vlasov assumptions and Fourier series for the circumferential direction, an exact solution in the axial direction is obtained. To improve the results assumptions of Vlasov’s semimomentless theory are enhanced, i.e. we have used only the hypothesis of middle surface inextensibility to obtain a solution in axial direction. Nonlinear characteristic equations and natural mode shapes, are derived for all type of boundary conditions. Good agreement with experimental data and FEM is shown and advantage over the existing formulas for a variety of boundary conditions is presented.


Author(s):  
K. Lai ◽  
X. Sun ◽  
C. Dasch

Resonance inspection uses the natural acoustic resonances of a part to identify anomalous parts. Modern instrumentation can measure the many resonant frequencies rapidly and accurately. Sophisticated sorting algorithms trained on sets of good and anomalous parts can rapidly and reliably inspect and sort parts. This paper aims at using finite-element-based modal analysis to put resonance inspection on a more quantitative basis. A production-level automotive steering knuckle is used as the example part for our study. First, the resonance frequency spectra for the knuckle are measured with two different experimental techniques. Next, scanning laser vibrometry is used to determine the mode shape corresponding to each resonance. The material properties including anisotropy are next measured to high accuracy using resonance spectroscopy on cuboids cut from the part. Then, finite element model (FEM) of the knuckle is generated by meshing the actual part geometry obtained with computed tomography (CT). The resonance frequencies and mode shapes are next predicted with a natural frequency extraction analysis after extensive mesh size sensitivity study. The good comparison between the predicted and the experimentally measured resonance spectra indicate that finite-element-based modal analyses have the potential to be a powerful tool in shortening the training process and improving the accuracy of the resonance inspection process for a complex, production level part. The finite element based analysis can also provide a means to computationally test the sensitivity of the frequencies to various possible defects such as porosity or oxide inclusions especially in the high stress regions that the part will experience in service.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


1992 ◽  
Vol 59 (2S) ◽  
pp. S197-S204 ◽  
Author(s):  
Jean Wu-Zheng Zu ◽  
Ray P. S. Han

A free flexural vibrations of a spinning, finite Timoshenko beam for the six classical boundary conditions are analytically solved and presented for the first time. Expressions for computing natural frequencies and mode shapes are given. Numerical simulation studies show that the simply-supported beam possesses very peculiar free vibration characteristics: There exist two sets of natural frequencies corresponding to each mode shape, and the forward and backward precession mode shapes of each set coincide identically. These phenomena are not observed in beams with the other five types of boundary conditions. In these cases, the forward and backward precessions are different, implying that each natural frequency corresponds to a single mode shape.


Sign in / Sign up

Export Citation Format

Share Document