Experimental and Numerical Study of Transient Electronic Chip Cooling by Liquid Flow in Microchannel Heat Sink

Author(s):  
Jingru Zhang ◽  
Tiantian Zhang ◽  
Yogesh Jaluria

Cooling of electronic chips has become a critical aspect in the development of electronic devices. Overheating may cause the malfunction or damage of electronics and the time needed for heat removal is important. In this paper, an experimental setup and numerical model was developed to test the effects of different parameters and their influence on the transient electronic chip cooling by liquid flow in microchannel heat sinks. The temperature change with time of the system for different heat fluxes at different flow was determined, from which the response time can be obtained. Three different configurations of multi-microchannel heat sinks were tested during the experiment. Numerical models were then developed to simulate the transient cooling for two of the configurations. A good agreement between the experimental data and numerical results showed that single-channel models are capable of simulating the thermal behavior of the entire heat sink by applying appropriate assumptions and boundary conditions.

2021 ◽  
Vol 2116 (1) ◽  
pp. 012052
Author(s):  
David Olugbenga Ariyo ◽  
Tunde Bello-Ochende

Abstract Deionized water at a temperature of 25 °C was used as the cooling fluid and aluminium as the heat sink material in the geometric optimization and parameter modelling of subcooled flow boiling in horizontal equilateral triangular microchannel heat sinks. The thermal resistances of the microchannels were minimized subject to fixed volume constraints of the heat sinks and microchannels. A computational fluid dynamics (CFD) ANSYS code used for both the simulations and the optimizations was validated by the available experimental data in the literature and the agreement was good. Fixed heat fluxes between 100 and 500 W/cm2 and velocities between 0.1 and 7.0 m/s were used in the study. Despite the relatively high heat fluxes in this study, the base temperatures of the optimal microchannel heat sinks were within the acceptable operating range for modern electronics. The pumping power requirements for the optimal microchannels are low, indicating that they can be used in the cooling of electronic devices.


Author(s):  
Dylan Farnam ◽  
Bahgat Sammakia ◽  
Kanad Ghose

Increasing power dissipation in microprocessors and other devices is leading to the consideration of more capable thermal solutions than the traditional air-cooled fin heat sinks. Microchannel heat sinks (MHSs) are promising candidates for long-term thermal solution given their simplicity, performance, and the development of MHS-compatible 3D device architecture. As the traditional methods of cooling generally have uniform heat removal on the contact area with the device, thermal consequences of design have traditionally been considered only after the layout of components on a device is finalized in accordance with connection and other criteria. Unlike traditional cooling solutions, however, microchannel heat sinks provide highly nonuniform heat removal on the contact area with the device. This feature is of utmost importance and can actually be used quite advantageously, if considered during the design phase of a device. In this study, simple thermal design criteria governing the general placement of components on devices to be cooled by microchannel heat sink are developed and presented. These thermal criteria are not meant to supersede connection and other important design criteria but are intended as a necessary and valuable supplement. Full-scale numerical simulations of a device with a realistic power map cooled by microchannel heat sink prove the effectiveness of the criteria, showing large reduction in maximum operating temperature and harmful temperature gradients. The simulations further show that the device and microchannel heat sink can dissipate a comparatively high amount of power, with little thermal danger, when design considers the criteria developed herein.


Author(s):  
J. P. Ramirez-Vazquez ◽  
A. Hernandez-Guerrero ◽  
J. L. Zuñiga-Cerroblanco ◽  
J. C. Rubio-Arana

This work presents a numerical study of the thermal and hydrodynamic behavior of a pin-fin heat sink where deflectors are placed along the flow of the coolant air; the effect of the arrangement of the fins and deflectors in the global performance of the heat sink is investigated. The fin geometry analyzed is rectangular, and the arrangement of the fins is inline. The heat sink is placed in a channel in which air flows, and a constant heat flux is applied at the bottom wall of the heat sink with values equivalent to the heat fluxes generated by current electronic devices. Deflectors are placed in the top of the channel in order to drive the air flow into the front and end of the heat sink. The results for the Nusselt number and for the pressure drop along the heat sink are reported. The best dimension of deflectors and pitch for the arrangement based on the thermal and hydraulic performance is attained.


Author(s):  
Mustafa Koz ◽  
Ali Kosar

Micro heat sinks have a broad applicability in many fields such as aerospace applications, micro turbine cooling, micro reactors electronics cooling and micro biological applications. Among different types of micro heat sinks, those with micro pin-fins are becoming popular due to their enhanced heat removal performance. However, relevant experimental data is still scarce and few optimization studies are present in the literature. In order to effectively optimize their performance an extensive parametric study is necessary and should be based on a realistic model. Moreover, micro pin fin heat sinks should be optimized according to appropriate performance criteria depending on the application. The objective of this paper is to fill the research gap in micro pin fin heat sink optimization based on realistic configurations. In this paper, the parameters for micro pin optimization are the pin-fin height over diameter ratio (0.5<H/D<5) and the longitudinal and transverse pitch ratios (1.5<(SL, ST)/D<5), while Reynolds number and heat flux provided from the base of the micro heat sink are in the range of (1<Re<100) and (20<q(W/cm2)<500) respectively. In this research micro pin fin heat sinks are three dimensionally modeled on a one-to-one scale with the use of commercially available software COMSOL Multiphasics 3.5a. Full Navier-Stokes equations subjected to continuity and energy equations are solved for stationary conditions. To have increased computational efficiency, half of the heat sink is modeled with the use of a symmetry plane. In order to validate the use of numerical models parametric values from previous experimental data available in the literature are exactly taken and simulated. The numerical and experimental results show a good agreement. After this validation optimization study is performed using the three dimensional numerical models.


2010 ◽  
Vol 7 (2) ◽  
pp. 90-98
Author(s):  
Pradeep Hegde ◽  
K.N. Seetharamu

Numerical investigations with regard to the thermal characteristics of water cooled single stack and multistack microchannel heat sinks subjected to nonuniform base heating are conducted. Nonuniformities in base heating are accomplished by applying gradually increasing and gradually decreasing base heat fluxes with respect to coolant flow direction in the heat sink. The effects of heat concentration upstream, downstream, and in the center half of the microchannel heat sinks (similar to a hotspot) are also studied. Both parallel flow and counter coolant flow conditions in the heat sink are considered and the results are compared. The results are presented in the form of base temperature distribution and heat sink thermal resistance. The finite element method is used for the analysis.


Author(s):  
Zahra Kheirandish ◽  
Haleh Shafeie ◽  
Omid Abouali

A numerical study was performed for the laminar forced convection of water over a bank of staggered micro fins with cross section of the elongated hexagon. A 3-dimensional mathematical model, for conjugate heat transfer in both solid and liquid is developed. For this aim the Navier-Stokes and energy equations for the liquid region and the energy equation for the solid region are solved simultaneously and the pressure drop as well as the heat transfer characteristics was investigated. The length and width of the studied heat sinks are one centimeter and different heights in the range of 200–500 micrometer were examined for the fluid media. The heat removal of the finned heat sink is compared with an optimum simple mirochannel heat sink. The comparison which is presented at equal pumping powers depicts the enhancement of the heat removal for some specific sizes of the finned heat sink.


Author(s):  
Naveenan Thiagarajan ◽  
Daniel T. Pate ◽  
Sushil H. Bhavnani ◽  
Rory J. Jones

Advances in electronics such as chip level integration and die stacking have led to a bottleneck in further development since dissipation of the resulting high heat fluxes continues to be a challenge. Ongoing research in the field of flow boiling to meet the rising demands has resulted in the evolution of potential cooling technologies such as microchannel heat sinks. In an effort to understand the flow boiling in these micro-structures, experiments were previously conducted by the authors using 19 parallel, surface enhanced microchannels with a hydraulic diameter of 253μm. Flow instabilities which can be attributed to channel-to-channel interaction and the effect of compressible volumes at channel exit and inlet were observed under certain subcooled boiling conditions although these were mitigated in saturated conditions by the presence of re-entrant cavities. To completely eliminate the instabilities, it is important to identify the underlying mechanisms by isolating these causes. To achieve this, a study of flow boiling of dielectric fluid FC72 (C6F14) in a single microchannel test section of height 347 microns and width ranging from 100–400 microns was conducted. The base of the microchannel was augmented with reentrant cavities. The study was performed at mass fluxes ranging from 500–2000 kg/m2-s and inlet subcooling up to 20°C. The results include the parametric effects of inlet subcooling, mass flux, heat flux and number of cavities on the pressure drop. It was observed that the pressure drop oscillations in the subcooled boiling regime observed earlier in the multichannel configuration, were not observed in the subcooled regime in the single channel test device of width 100 microns. Further, adiabatic experiments were conducted to study the effect of channel size on the friction factor. These studies will help provide fundamental design input to enable the development of microchannel heat sinks.


Author(s):  
Farnaz Faily ◽  
Haleh Shafeie ◽  
Omid Abouali

This paper presents a numerical study for the single phase heat transfer of water in the heat sinks with different types of the grooved microchannels. The cross section of the grooves is either rectangular or arced shape. The grooves are embedded vertically in the side walls of the microchannel but for the floor, different orientation angles of the grooves in the range of 0–60° are investigated. As well, for the grooves on the floor of the channel, the chevron-shape is another pattern which has bee studied. A 3-D computational model is developed for each of the studied cases and the conjugate heat transfer in both solid and liquid is investigated. The governing equations are solved numerically to determine the pressure drop and heat transfer through the heat sink. The results of the heat removal and coefficient of performance (COP) for different types of the grooved microchannel heat sinks are compared to each other as well with those for a simple microchannel heat sink with minimum fin thickness. The comparison shows that the case with minimum vertical fin thickness and arc grooves aligned in 60° on the floor has the maximum heat removal and COP among the studied cases.


Sign in / Sign up

Export Citation Format

Share Document