Rainwater Harvesting as a Distributed Resource

Author(s):  
John H. Whear

Explore the possibilities, difficulties, and benefits of large scale rainwater harvesting using recycled water distribution systems. This paper explores the growing use of recycled water and the possibilities that distribution systems have created. It investigates water quality of rainwater harvesting (RWH) systems and the quality of recycled water and their uses. It examines the amount of rain water available using aproximatly 10% of available roof area in the city and examines the benefits of large scale rainwater harvesting unique to San Antonio. An exhaustive search of published materials was conducted, coupled with communications with the Texas Water Development Board and the San Antonio Water System. Quality standards for recycled water were compared with known test results for harvested rainwater. With the use of mathematical models, a distributed rainwater harvesting systems was compared to a stand alone system. Connection to a distribution system reduces the cost of rainwater harvesting by eliminating the need for large amounts of storage, which can account for 50% of the total costs of a standalone system. With minor filtering and periodic quality checks, large structures may supply sufficient amounts of rainwater to justify being a source of water in a recycled water distribution system.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1163
Author(s):  
Mengning Qiu ◽  
Avi Ostfeld

Steady-state demand-driven water distribution system (WDS) solution is the bedrock for much research conducted in the field related to WDSs. WDSs are modeled using the Darcy–Weisbach equation with the Swamee–Jain equation. However, the Swamee–Jain equation approximates the Colebrook–White equation, errors of which are within 1% for ϵ/D∈[10−6,10−2] and Re∈[5000,108]. A formulation is presented for the solution of WDSs using the Colebrook–White equation. The correctness and efficacy of the head formulation have been demonstrated by applying it to six WDSs with the number of pipes ranges from 454 to 157,044 and the number of nodes ranges from 443 to 150,630. The addition of a physically and fundamentally more accurate WDS solution method can improve the quality of the results achieved in both academic research and industrial application, such as contamination source identification, water hammer analysis, WDS network calibration, sensor placement, and least-cost design and operation of WDSs.


Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB


2021 ◽  
Vol 6 (2) ◽  
pp. 107-120
Author(s):  
Kiki Rizky Fauziah ◽  
Nora Pandjaitan ◽  
Titiek Ujianti Karunia

Water distribution systems are often problematic in terms of quantity, pressure, continuity and quality. The research aimed to analyze water distribution system of PDAM Tirta Kahuripan Kabupaten Bogor in Ciomas Permai Residence. The research was conducted by collecting primary and secondary data. Analysis of clean water distribution system was carried out using the EPANET 2.0. Ciomas Permai Residence was located in zone 6 of PDAM Tirta Kahuripan servive areas. The result showed that the quality of the distributed water was in accordance with the applicable standard and continuous for 24 hours even though there were significant discharge differences during peak hours. Based on the measurement on Sunday and Monday, the minimum discharge were 14.4 l/sec and 13.8 l/sec respectively, higher than customer requirements of 7.34 l/sec, The water distribution pressure ranged from 0.7 - 1.35 bar. The result of clean water distribution simulation using EPANET 2.0 showed that the velocity of water and headloss were not accordance with the applicable standards.


2018 ◽  
Vol 9 (1) ◽  
pp. 91
Author(s):  
Wanwan Meng ◽  
Yongguang Cheng ◽  
Jiayang Wu ◽  
Zhiyan Yang ◽  
Yunxian Zhu ◽  
...  

Simulating hydraulic transients in ultra-long water (oil, gas) transmission or large-scale distribution systems are time-consuming, and exploring ways to improve the simulation efficiency is an essential research direction. The parallel implementation of the method of characteristics (MOC) on graphics processing unit (GPU) chips is a promising approach for accelerating the simulations, because GPU has a great parallelization ability for massive but simple computations, and the explicit and local features of MOC meet the features of GPU quite well. In this paper, we propose and verify a GPU implementation of MOC on a single chip for more efficient simulations of hydraulic transients. Details of GPU-MOC parallel strategies are introduced, and the accuracy and efficiency of the proposed method are verified by simulating the benchmark single pipe water hammer problem. The transient processes of a large scale water distribution system and a long-distance water transmission system are simulated to investigate the computing capability of the proposed method. The results show that GPU-MOC method can achieve significant performance gains, and the speedup ratios are up to hundreds compared to the traditional method. This preliminary work demonstrates that GPU-MOC parallel computing has great prospects in practical applications with large computing load.


2006 ◽  
Vol 72 (9) ◽  
pp. 5864-5869 ◽  
Author(s):  
Elizabeth D. Hilborn ◽  
Terry C. Covert ◽  
Mitchell A. Yakrus ◽  
Stephanie I. Harris ◽  
Sandra F. Donnelly ◽  
...  

ABSTRACT There is evidence that drinking water may be a source of infections with pathogenic nontuberculous mycobacteria (NTM) in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular colonization of protozoa. Our goal was to determine whether we could detect a reduction in the prevalence of NTM recovered from an unfiltered surface drinking water system after the addition of ozonation and filtration treatment and to characterize NTM isolates by using molecular methods. We sampled water from two initially unfiltered surface drinking water treatment plants over a 29-month period. One plant received the addition of filtration and ozonation after 6 months of sampling. Sample sites included those at treatment plant effluents, distributed water, and cold water taps (point-of-use [POU] sites) in public or commercial buildings located within each distribution system. NTM were recovered from 27% of the sites. POU sites yielded the majority of NTM, with >50% recovery despite the addition of ozonation and filtration. Closely related electrophoretic groups of Mycobacterium avium were found to persist at POU sites for up to 26 months. Water collected from POU cold water outlets was persistently colonized with NTM despite the addition of ozonation and filtration to a drinking water system. This suggests that cold water POU outlets need to be considered as a potential source of chronic human exposure to NTM.


2019 ◽  
Vol 111 ◽  
pp. 01071
Author(s):  
Adrian Retezan ◽  
Szilveszter Geyer Ehrenberg

Everyday life does involve use of cooling systems for different areas and scenarios. We use them to keep our thermal comfort level at optimum, either to get rid of some extra heat from technological systems. From various cooling solutions, one and very common system is the chilled water system, where centralised chiller plants produce the cooling energy and all terminal units do receive cooling energy using a distribution loop. According to statistical data, electrical energy consumption of pumps might be up to 17% of entire electrical use of the cooling plant. When designing our cooling system loads during operation will not be same all the time. Variation must be treated accordingly, therefore to get best efficiency of the system, we must get a good control. Beside shut-off motorised valves our balancing must be considered in different scenarios. The paper looks to summarize the challenges in getting a good balancing and energy efficiency in chilled water distribution system.


2008 ◽  
Vol 10 (2) ◽  
pp. 113-126 ◽  
Author(s):  
L. Berardi ◽  
O. Giustolisi ◽  
Z. Kapelan ◽  
D. A. Savic

The economic and social costs of pipe failures in water and wastewater systems are increasing, putting pressure on utility managers to develop annual replacement plans for critical pipes that balance investment with expected benefits in a risk-based management context. In addition to the need for a strategy for solving such a multi-objective problem, analysts and water system managers need reliable and robust failure models for assessing network performance. In particular, they are interested in assessing a conduit's propensity to fail and how to assign criticality to an individual pipe segment. In this paper, pipe deterioration is modelled using Evolutionary Polynomial Regression. This data-driven technique yields symbolic formulae that are intuitive and easily understandable by practitioners. The case study involves a water quality zone within a distribution system and entails the collection of historical data to develop network performance indicators. Finally, an approach for incorporating such indicators into a decision support system for pipe rehabilitation/replacement planning is introduced and articulated.


2006 ◽  
Vol 4 (S2) ◽  
pp. 19-30 ◽  
Author(s):  
Michael F. Craun ◽  
Gunther F. Craun ◽  
Rebecca L. Calderon ◽  
Michael J. Beach

Epidemic waterborne risks are discussed in this paper. Although the true incidence of waterborne illness is not reflected in the currently reported outbreak statistics, outbreak surveillance has provided information about the important waterborne pathogens, relative degrees of risk associated with water sources and treatment processes, and adequacy of regulations. Pathogens and water system deficiencies that are identified in outbreaks may also be important causes of endemic waterborne illness. In recent years, investigators have identified a large number of pathogens responsible for outbreaks, and research has focused on their sources, resistance to water disinfection, and removal from drinking water. Outbreaks in surface water systems have decreased in the recent decade, most likely due to recent regulations and improved treatment efficacy. Of increased importance, however, are outbreaks caused by the microbial contamination of water distribution systems. In order to better estimate waterborne risks in the United States, additional information is needed about the contribution of distribution system contaminants to endemic waterborne risks and undetected waterborne outbreaks, especially those associated with distribution system contaminants.


2002 ◽  
Vol 2 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Jaeger ◽  
V. Gauthier ◽  
M.-C. Besner ◽  
B. Viret ◽  
R. Toulorge ◽  
...  

Understanding the reasons for water quality failures in drinking water distribution systems has become a priority for network managers. The proposed approach provides a unique tool for assessing the consequences of water supply changes and the consequences of distribution system operation and maintenance on the quality of distributed water. Its main benefit is to help the water producer understand the origins of local water quality problems, and consequently to eliminate them from their distribution system.


Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB


Sign in / Sign up

Export Citation Format

Share Document