Evaluating the Mechanical Properties of 3D Woven Carbon-Epoxy Composite Materials Using Experimental Data and FEA Methods

Author(s):  
Mahdi Farahikia ◽  
Sunilbhai Macwan ◽  
Fereidoon Delfanian ◽  
Zhong Hu

A series of tensile, compression and shear tests were carried out on carbon-epoxy composite materials to evaluate their mechanical properties. The experiments were set upin accordance with ASTM standards that best corresponded to the test specifications. Specimens were categorized into groups according to their dimensions and shape. Based on testing requirements, some were cut into rectangular and others into dog bone specimens to determine the effects of stress concentration. A number of specimens were reinforced at both ends by means of tabs which were bonded on both faces to reduce the effects of the external pressure exerted on them through the grips of the testing machines, and the rest of them were tested without any reinforcement tabs. All the specimens were tested until failure. Load, elongation (displacement) and strain data were recorded by means of strain gages and data acquisition systems. The experimental results obtained from similar tests on different groups are compared to examine the conformity of the results regardless of dimension and geometry, and are also verified by Finite Element Analysis (FEA). In addition, FEA is used to study different conditions, such as geometry, that could affect the final results. The experimental data are analyzed and effects of fiber direction on failure method are studied. It was concluded that shape and geometry factors as well as fiber direction influenced the failure method. The work, however, is still in progress and tests under conditions, such as elevated temperature, will be conducted to study other effects on the mechanical properties of 3D woven carbon-epoxy composites.

2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2021 ◽  
Vol 889 ◽  
pp. 27-31
Author(s):  
Norie A. Akeel ◽  
Vinod Kumar ◽  
Omar S. Zaroog

This research Investigates the new composite materials are fabricated of two or more materials raised. The fibers material from the sources of natural recycled materials provides certain benefits above synthetic strengthening material given that very less cost, equivalent strength, less density, and the slightest discarded difficulties. In the current experiments, silk and fiber-reinforced epoxy composite material is fabricated and the mechanical properties for the composite materials are assessed. New composite materials samples with the dissimilar fiber weight ratio were made utilizing the compression Molding processes with the pressure of 150 pa at a temperature of 80 °C. All samples were exposed to the mechanical test like a tensile test, impact loading, flexural hardness, and microscopy. The performing results are the maximum stress is 33.4MPa, elastic modulus for the new composite material is 1380 MPa, and hardness value is 20.64 Hv for the material resistance to scratch, SEM analysis of the microstructure of new composite materials with different angles of layers that are more strength use in industrial applications.


2012 ◽  
Vol 184-185 ◽  
pp. 534-537
Author(s):  
Jing Jing Zhou ◽  
Ai Dong Guo ◽  
Chun Hui Li ◽  
Zhen Jiang Lin ◽  
Tie Zhuang Wu

By setting contact sets, achieved overall analysis results of the mechanical properties with omni-direction side-loading forklift truck lifting system based on COSMOSWorks. And made an experimental measurements to omni-direction side-loading forklift truck lifting system by electrometric methods. There was a good relevance between experimental data and calculation values, and the deviation was basically within the 10 percent allowed. Finally, in this way it verified the correctness and reliability of the finite element analysis by experimental measurements. Ensured the omni-direction side-loading forklift truck lifting system could be safe and efficient to work. And also it laid a foundation for subsequent structural optimization.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
V. Alfred Franklin ◽  
T. Christopher

The experimental determination of the resistance to delamination is very important in aerospace applications as composite materials have superior properties only in the fiber direction. To measure the interlaminar fracture toughness of composite materials, different kinds of specimens and experimental methods are available. This article examines the fracture energy of four-point end-notched flexure (4ENF) composite specimens made of carbon/epoxy and glass/epoxy. Experiments were conducted on these laminates and the mode II fracture energy, GIIC, was evaluated using compliance method and was compared with beam theory solution. The crack growth resistance curve (R-curve) for these specimens was generated and the found glass/epoxy shows higher toughness values than carbon/epoxy composite. From this study, it was observed that R-curve effect in 4ENF specimens is quite mild, which means that the measured delamination toughness, GIIC, is more accurate.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
N. Hadik ◽  
A. Outzourhit ◽  
A. Elmansouri ◽  
A. Abouelaoualim ◽  
A. Oueriagli ◽  
...  

Composite materials were made by mixing powders ofBa1−xSrxTiO3(x=0.2and 0.4) ceramics and epoxy resin with various volume fractions (vol%). Dielectric measurements of these composites were performed as a function of filler ratio in the range 100–360°K at 10 KHz. The dielectric constant of the composite increased with increasing volume fraction varies slightly with temperature. The 20 vol% of BST(0.4)-epoxy composite had the highest dielectric constant of 19.4 and dielectric loss tangent of 0.027. Among the dielectric mixing models presented, the model of Lichtenecker shows the best fit to the experimental data for both composites.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2801
Author(s):  
Lorenzo Sisca ◽  
Patrizio Tiziano Locatelli Quacchia ◽  
Alessandro Messana ◽  
Andrea Giancarlo Airale ◽  
Alessandro Ferraris ◽  
...  

This research work investigated the influence of the press molding manufacturing process on the mechanical properties, both for thermoplastic and thermosetting fiber reinforced composite materials. The particular geometry of the case study, called Double Dome, was considered in order to verify the behavior of the Thermoplastic and Thermosetting prepreg in terms of shell thickness variation and fibers shear angle evolution during the thermoforming process. The thermoforming simulation was performed using LS-DYNA® Finite Element Analysis (FEA) code, and the results were transferred by Envyo®, a dedicated mapping tool, into a LS-DYNA® virtual model for the structural simulation. A series of Double Dome specimens was produced with industrial equipment, and a bending experimental test was been carried on. Finally, a numerical-experimental correlation was performed, highlighting a significant forecast of the mechanical properties for the considered component.


2021 ◽  
Vol 19 (2) ◽  
pp. 1251-1279
Author(s):  
Fengjie Liu ◽  
◽  
Monan Wang ◽  
Yuzheng Ma

<abstract> <p>The research of the mechanical properties of skeletal muscle has never stopped, whether in experimental tests or simulations of passive mechanical properties. To investigate the effect of biomechanical properties of micro-components and geometric structure of muscle fibers on macroscopic mechanical behavior, in this manuscript, we establish a multiscale model where constitutive models are proposed for fibers and the extracellular matrix, respectively. Besides, based on the assumption that the fiber cross-section can be expressed by Voronoi polygons, we optimize the Voronoi polygons as curved-edge Voronoi polygons to compare the effects of the two cross-sections on macroscopic mechanical properties. Finally, the macroscopic stress response is obtained through the numerical homogenization method. To verify the effectiveness of the multi-scale model, we measure the mechanical response of skeletal muscles in the in-plane shear, longitudinal shear, and tensions, including along the fiber direction and perpendicular to the fiber direction. Compared with experimental data, the simulation results show that this multiscale framework predicts both the tension response and the shear response of skeletal muscle accurately. The root mean squared error (RMSE) is 0.0035 MPa in the tension along the fiber direction; The RMSE is 0.011254 MPa in the tension perpendicular to the fiber direction; The RMSE is 0.000602 MPa in the in-plane shear; The RMSE was 0.00085 MPa in the longitudinal shear. Finally, we obtained the influence of the component constitutive model and muscle fiber cross-section on the macroscopic mechanical behavior of skeletal muscle. In terms of the tension perpendicular to the fiber direction, the curved-edge Voronoi polygons achieve the result closer to the experimental data than the Voronoi polygons. Skeletal muscle mechanics experiments verify the effectiveness of our multiscale model. The comparison results of experiments and simulations prove that our model can accurately capture the tension and shear behavior of skeletal muscle.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document