Adhesive and Mechanical Properties of Carbon Nanotube Probes Contacting Chemically-Treated Surfaces

Author(s):  
Kane M. Barker ◽  
Al Ferri ◽  
Lawrence A. Bottomley

Carbon nanotubes are useful in a variety of measurement applications. In the case of Atomic Force Microscopes (AFMs), carbon nanotubes can be affixed to the tip of the AFM cantilever to improve image resolution and enable images of surfaces with deep crevices and trench structures. In this paper, the mechanical response of long, straight, small walled carbon nanotubes (SWNTs) under compressive and tensile load is examined with an atomic force microscope. Multi-dimensional force spectroscopy (MDFS) is used to simultaneously measure the cantilever resonant frequency, deflection, and scanner motion. The acquired force curves reveal that the SWNT buckles shortly after contact is initiated. As the scanner continues to rise and then reverses direction, the SWNT undergoes a number of adhesion/sticking episodes, buckling, and slip events. The bulk properties of the nanotube are estimated by measuring the shift in natural frequency during tension. Finally, the carbon nanotube is modeled as an elastica in order to predict the post-buckled shape of the SWNT. By comparing the model results with MDFS results, the static coefficient of friction between the SWNT and a variety of surfaces is estimated. The study suggests that MDFS has a wide applicability for studying the mechanical and adhesive properties of various nanotubes, nanorods and nanofibers.

2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3707-3710 ◽  
Author(s):  
Nami Choi ◽  
Takayuki Uchihashi ◽  
Hidehiro Nishijima ◽  
Takao Ishida ◽  
Wataru Mizutani ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Terry P. Bigioni ◽  
Brett A. Cruden

A popular technique for characterizing the mechanical properties of carbon nanotubes is to apply a one-dimension axial compression and measure its response to the compressive force. At some critical compression, a dramatic decrease in the force is observed. This has previously been attributed to Euler buckling, allowing the elastic modulus to be calculated from the Euler buckling force. We have attached individual plasma enhanced chemical vapor deposition (PECVD) grown carbon nanofibers (CNFs) and thermal chemical vapor deposition (CVD) grown carbon nanotubes (CNTs) to the apex of an atomic force microscope (AFM) cantilever to examine this mechanical response. By combining the force measurements and simultaneous video microscopy, we are able to observe the mechanical deformation and correlate points in the force curve with phenomena such as slipping and bending. Analysis of the mechanical response must therefore be interpreted in terms of bending and/or slipping of a tube compressed by an off-normal force.


2010 ◽  
Vol 150-151 ◽  
pp. 1413-1416 ◽  
Author(s):  
Hong Yan Chen ◽  
Zhen Xing Kong ◽  
Ji Hui Wang

The cure kinetics of Derakane 411-350, a kind of vinyl ester resin, and its suspensions containing multi-walled carbon nanotubes( MWCNTs) were investigated via non-isothermal dynamic scanning calorimetry (DSC) measurements. The results showed that incorporation of MWCNTs into vinyl ester resin excessively reduces polymerization degree and crosslinking density of vinyl ester resin. For suppressing the negative effect caused by nanotubes, the higher temperature initiator combined with the initiator MEKP was used. Dynamic-mechanical Behavior testing was then carried out on the cured sample in order to relate the curing behavior of MWCNTs modified resin suspensions to mechanical response of their resulting nanocomposites. It was revealed that nanocomposites containing MWCNTs possessed larger storage modulus values as well as higher glass transition temperatures (Tg) as compared to those without MWCNTs after using mixed intiators system to improve the degree of cure.


2013 ◽  
Vol 716 ◽  
pp. 373-378
Author(s):  
Qian Zhang ◽  
Xin Bao Gao ◽  
Tian Peng Li

Carbon nanotube/expanded graphite composite material was prepared by expanding the mixture of multi-walled carbon nanotubes and expansible graphite under the condition of high temperature. The microstructure and composition was studied by using SEM and XRD. The study shows that the tubular structure of carbon nanotubes in the composite material is changed by high temperature expanding process, and the microstructure is different with different expanding temperature. When the expanding temperature was 900°C, carbon nanotubes transformed, then attached to the surface of expanded graphite flake, so carbon nanotubes and expanding graphite combined strongly; globular carbon nanotubes attached to the surface of expanded graphite flake at the temperature of 700°C, both were combined much more strongly; carbon nanotubes retained the tube structure at the temperature of 500°C, combination was looser due to the simple physical adsorption. The result shows that the choice of expanding temperature has an important effect on microstructure of carbon nanotube/expanded graphite composite material.


Author(s):  
Cristian Andrei Gal ◽  
Laura Edit Barabas ◽  
Judith Hajnal Bartha-Vari ◽  
Madalina Elena Moisa ◽  
Diana Balogh-Weiser ◽  
...  

An efficient nanobioconjugate of lipase B from Candida antarctica was prepared by the covalent binding on carboxy-functionalized single-walled carbon nanotubes and tested in batch and flow mode for the enzymatic...


2006 ◽  
Vol 963 ◽  
Author(s):  
Vitor R. Coluci ◽  
Socrates O. Dantas ◽  
Ado Jorio ◽  
Douglas s Galvao

ABSTRACTEletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.


2002 ◽  
Vol 739 ◽  
Author(s):  
Mark Hughes ◽  
George Z. Chen ◽  
Milo S. P. Shaffer ◽  
Derek J. Fray ◽  
Alan H. Windle

ABSTRACTNanoporous composite films of multi-walled carbon nanotubes (MWNTs) and either polypyrrole (PPy) or poly(3-methylthiophene) (P3MeT) were grown using an electrochemical polymerization technique in which the nanotubes and conducting polymer were deposited simultaneously. The concentration and dispersion of MWNTs in the polymerization electrolyte was found to have a significant effect on the thickness of polymer coated on each MWNT and hence the loading of MWNTs in the films produced. It has been shown that for an increasing concentration of MWNTs in the polymerization electrolyte, the thickness of polymer coated on each MWNT decreases. This relationship made it possible to minimize ionic diffusion distances within the nanoporous MWNT-PPy films produced, reducing their electrical and ionic resistance and increasing their capacitance relative to similarly prepared pure PPy films.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


RSC Advances ◽  
2018 ◽  
Vol 8 (20) ◽  
pp. 11186-11190 ◽  
Author(s):  
H. Jintoku ◽  
Y. Matsuzawa ◽  
M. Yoshida

The light-induced switching of the optical and electrical properties of single-walled carbon nanotubes hybrid films with photoresponsive dispersant.


Sign in / Sign up

Export Citation Format

Share Document