Structural transformation of double-walled carbon nanotube bundles into multi-walled carbon nanotubes induced by current treatment

2008 ◽  
Vol 17 (2) ◽  
pp. 158-161 ◽  
Author(s):  
Tao Gong ◽  
Yong Zhang ◽  
Wenjin Liu ◽  
Jinquan Wei ◽  
Yi Jia ◽  
...  
2013 ◽  
Vol 716 ◽  
pp. 373-378
Author(s):  
Qian Zhang ◽  
Xin Bao Gao ◽  
Tian Peng Li

Carbon nanotube/expanded graphite composite material was prepared by expanding the mixture of multi-walled carbon nanotubes and expansible graphite under the condition of high temperature. The microstructure and composition was studied by using SEM and XRD. The study shows that the tubular structure of carbon nanotubes in the composite material is changed by high temperature expanding process, and the microstructure is different with different expanding temperature. When the expanding temperature was 900°C, carbon nanotubes transformed, then attached to the surface of expanded graphite flake, so carbon nanotubes and expanding graphite combined strongly; globular carbon nanotubes attached to the surface of expanded graphite flake at the temperature of 700°C, both were combined much more strongly; carbon nanotubes retained the tube structure at the temperature of 500°C, combination was looser due to the simple physical adsorption. The result shows that the choice of expanding temperature has an important effect on microstructure of carbon nanotube/expanded graphite composite material.


2002 ◽  
Vol 739 ◽  
Author(s):  
Mark Hughes ◽  
George Z. Chen ◽  
Milo S. P. Shaffer ◽  
Derek J. Fray ◽  
Alan H. Windle

ABSTRACTNanoporous composite films of multi-walled carbon nanotubes (MWNTs) and either polypyrrole (PPy) or poly(3-methylthiophene) (P3MeT) were grown using an electrochemical polymerization technique in which the nanotubes and conducting polymer were deposited simultaneously. The concentration and dispersion of MWNTs in the polymerization electrolyte was found to have a significant effect on the thickness of polymer coated on each MWNT and hence the loading of MWNTs in the films produced. It has been shown that for an increasing concentration of MWNTs in the polymerization electrolyte, the thickness of polymer coated on each MWNT decreases. This relationship made it possible to minimize ionic diffusion distances within the nanoporous MWNT-PPy films produced, reducing their electrical and ionic resistance and increasing their capacitance relative to similarly prepared pure PPy films.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79563-79577 ◽  
Author(s):  
S. A. Habibiannejad ◽  
A. Aroujalian ◽  
A. Raisi

In this study different functional groups on the surface of carbon nanotube enhanced the performance of Pebax 1657/MWNTs.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.


2010 ◽  
Vol 160-162 ◽  
pp. 737-742 ◽  
Author(s):  
J.W. Zhang ◽  
Zhen Luo ◽  
Y.L. Li ◽  
J.D. Zhu ◽  
J. Hao

A simple and reliable welding method was developed to weld carbon nanotubes with the power supply here. The carbon nanotubes were synthesized chemical vapor deposition method and Multi-walled carbon nanotubes was uesd here. Firstly, apply less than 5 V voltages between carbon nanotubes when they were in close proximity under direct view of optical microscope. Then, let carbon nanotube contact with each other and increase the external voltage to 7–8V until carbon nanotube was attached to the end of the other, the two carbon nanotube join into a carbon nanotube. Furthermore, some experiments were implemented to analyze the reliability, the images of the weld joint and the weld strength all indicted this method were reliable.


2013 ◽  
Vol 284-287 ◽  
pp. 204-210
Author(s):  
Yi Ming Jen ◽  
Chien Yang Huang

This study experimentally analyzed the hygrothermal effect on the static and fatigue strengths of acid-treated multi-walled carbon nanotubes (CNTs)/epoxy composites. The nanocomposite specimens with various CNT contents (0., 0.5, and 1.0 wt.%) were statically and fatigue-tested under three different hygrothermal conditions (25 °C/60% RH, 25° C/85% RH, and 40 °C/85% RH) to investigate the influences of hygrothermal conditions and CNT contents on the tensile static and fatigue strengths of the studied nanocomposites. The results show that the static and fatigue strengths decreased slightly at 25 °C/85% RH environments compared with those tested under the 25 °C/60% RH condition. However, the static and fatigue strengths of the studied nanocomposites decreased substantially under the 40 °C/85% RH condition. The combined temperature and humidity environments weaken the interfacial adhesion between the CNT surfaces and the epoxy matrix. Moreover, the experimental results show that the addition of 0.5 wt.% of carbon nanotubes improved the static and fatigue strengths considerably under the same hygrothermal environments. However, when an excessive amount of CNTs was used (1.0 wt.%), the nanocomposite exhibited the lowest strengths compared with the specimens with 0 and 0.5 wt.% CNTs. The stress concentration effect caused by the CNT aggregates was detrimental to the static and fatigue strengths of the studied nanocomposites.


2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


Sign in / Sign up

Export Citation Format

Share Document