Structural Behavior of Microbeams Actuated by Out-of-Plane Electrostatic Fringing-Fields

Author(s):  
Hassen M. Ouakad

In this paper, we present an investigation of the static behavior of a doubly-clamped microbeam actuated electrically through out-of-plane electrostatic fringing-fields. The distributed electrostatic force is caused by the asymmetry of the fringing-fields. This is actually due to the out-of-plane asymmetry of the beam and its two actuating stationary electrodes. The electric force was approximated by means of fitting the results of two-dimensional numerical solution of the electrostatic problem using Finite-Element Method (FEM). Then, a reduced-order model (ROM) was built using the Galerkin decomposition with linear undamped modes of a clamped-clamped beam as base functions. The ROM equations are solved numerically to get the static response of the considered micro-actuator when actuated by a DC load. Results shows possibility of having three different regimes for this particular MEMS device: a bending regime, a catenary regime, and an elastic regime. Eigenvalue problem is then solved to get the variation of the fundamental natural frequency when the system is deflected by a DC load. Results show that controlling the microbeam stroke, with a DC voltage on the gate electrodes, enables us to tune the system frequency, resulting in a possibility of a tunable MEMS device without a pull-in scenario.

Author(s):  
Dumitru I. Caruntu ◽  
Jose C. Solis Silva

The nonlinear response of an electrostatically actuated cantilever beam microresonator sensor for mass detection is investigated. The excitation is near the natural frequency. A first order fringe correction of the electrostatic force, viscous damping, and Casimir effect are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for uniform microresonators with mass deposition and without are reported.


Author(s):  
Dumitru I. Caruntu ◽  
Israel Martinez

The nonlinear response of an electrostatically actuated cantilever beam microresonator is investigated. The AC voltage is of frequency near resonator’s natural frequency. A first order fringe correction of the electrostatic force and viscous damping are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for the uniform microresonator are compared with those obtained via the Method of Multiple Scales (MMS).


Author(s):  
Slava Krylov ◽  
Nicola Molinazzi ◽  
Tsvi Shmilovich ◽  
Uri Pomerantz ◽  
Stella Lulinsky

We report on an approach for efficient excitation of large amplitude flexural out-of-plane vibrations of micro beams and present results of theoretical and experimental feasibility study of the suggested principle. An actuating electrode is located symmetrically at the two sides of the beam and is fabricated from the same layer of the wafer. The electrostatic force is engendered by the asymmetry of the fringing fields in the deformed state and acts in the direction opposite to the deflection therefore increasing the effective stiffness of the system. The time-varying voltage applied to the electrode results in the modulation of this electrostatic stiffness and consequently in the parametric excitation of the structure. The device may exhibit large vibrational amplitudes not limited by the pull-in instability common in close-gap actuators. In contrast to previously reported devices excited by the fringing fields, the force considered here is of distributed character. The reduced order model was built using the Galerkin decomposition with linear modes as base functions and the resulting system of nonlinear differential equations was solved numerically. The electrostatic forces were approximated by means of fitting the results of three-dimensional numerical solution for the electric fields. The devices fabricated from a silicon on insulator (SOI) substrate using deep reactive ion etching (DRIE) based process were operated in ambient air conditions and the responses were registered by means of Laser Doppler Vibrometry. The experimental resonant curves were consistent with those predicted by the model. Theoretical and preliminary experimental results illustrated the feasibility of the suggested approach.


Author(s):  
Sami Alkharabsheh ◽  
Mohammad Younis

In this paper, the dynamic response of electrostatically actuated clamped-clamped arch microbeam is investigated when excited by a DC load superimposed to an AC harmonic load. The dynamic analysis is carried out using a Galerkin-based reduced order model along with a shooting technique to find periodic motions and analyzing its stability using a Floquet theory. Results are presented for the cases of primary and super harmonic resonances. We found several nonlinear dynamic phenomena due to the inherent nonlinear electrostatic force and geometric nonlinearity of the arch. These include frequency-amplitude dependence, jumps, tangent bifurcations, coexistence of solutions, and softening and hardening behaviors. The shooting technique showed high robustness in capturing both the stable and unstable states of the system. Hence, it helped clarify vague behaviors that were previously reported using longtime integration of the equations of motion.


Author(s):  
Dumitru I. Caruntu ◽  
Christian Reyes

This paper investigates the frequency response of microplates under electrostatic actuation. The microplate is parallel to a fixed ground plate. The electrostatic force that actuates the system is given by both Alternate Current (AC) and Direct Current (DC) voltages. The AC frequency is set to be near half natural frequency of the structure. Damping influence is also investigated in this paper. The method of investigation is Reduced Order Model. The effects of various parameters on the response of the structure are reported.


Author(s):  
Lior Medina ◽  
Rivka Gilat ◽  
Slava Krylov

The asymmetric buckling of a shallow initially curved stress-free micro beam subjected to distributed nonlinear deflection-dependent electrostatic force is studied. The analysis is based on a two degrees of freedom reduced order (RO) model, resulting from the Galerkin decomposition with linear undamped eigen-modes of a straight beam used as the base functions. Simple approximate expressions are derived defining the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric response curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the curve. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict non-symmetric buckling in electrostatically actuated bistable micro beams.


Author(s):  
Dumitru I. Caruntu ◽  
Le Luo

This paper deals with electrostatically actuated Carbon Nano-Tubes (CNT) cantilevers using Reduced Order Model method. The system consists of a CNT parallel to a ground plate. An alternating current (AC) voltage is considered between the two. The CNT undergoes an oscillatory motion due to the electrostatic force generated by the voltage. Another two forces act on the CNT, namely a damping force, and a van der Waals force due to gaps less than 50 nm. The Method of Multiple Scales (MMS) and the Reduced Order Model (ROM) method (using AUTO solver) are used to investigate the system under soft excitations and/or weak nonlinearities. The frequency response is found in the case of AC near half natural frequency.


Author(s):  
Lior Medina ◽  
Rivka Gilat ◽  
Slava Krylov

The axisymmetric snap-through of an initially curved circular micro plate, subjected to a transversal distributed electrostatic force is studied. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition, with buckling modes of a flat plate used as the base functions. In order to check the validity of the RO model, the corresponding problem for a displacement-independent (“mechanical”) load is solved, and a comparison between the RO model and those obtained using finite elements (FE) analysis is carried out. It is shown, that the two are in good agreement, indicating that the RO model can be used for a plate undergoing electrostatic loading. However, the study shows that at least three degrees of freedom (DOF) are required for an accurate prediction of the equilibrium path and bistability. The coupled electromechanical analysis shows that due to the nonlinearity of the electrostatic load, the snap-through occurs at a lower displacement than in the case of the “mechanical” load. Moreover, the study concludes that actuation of plates of realistic dimensions can be achieved by reasonably low voltages.


Author(s):  
Tiantian Xu ◽  
Mohammad I. Younis

Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools that typically used to analyze the behavior of complicated nonlinear systems, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. We plot and compare the expanded form of the electrostatic force to the exact form and found that at least twenty terms are needed to capture accurately the strong nonlinear form of the force over the full range of motion. Then, we utilize this form along with an Euler–Bernoulli beam model to study the static and dynamic behavior of CNTs. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. We found that the use of the new expanded form of the electrostatic force enables avoiding the cumbersome evaluation of the spatial integrals involving the electrostatic force during the modal projection procedure in the Galerkin method, which needs to be done at every time step. Hence, the new method proves to be much more efficient computationally.


2011 ◽  
Vol 11 (04) ◽  
pp. 641-672 ◽  
Author(s):  
DUMITRU I. CARUNTU ◽  
MARTIN KNECHT

This paper deals with the nonlinear response of electrostatically actuated cantilever beam microresonators near-half natural frequency. A first-order fringe correction of the electrostatic force, viscous damping, and Casimir effect are included in the model. Both forces, electrostatic and Casimir, are nonlinear. The dynamics of the resonator is investigated using the method of multiple scales (MMS) in a direct approach of the problem. The reduced order model (ROM) method, based on Galerkin procedure, is used as well. Steady-state motions are found. Numerical simulations are conducted for uniform microresonators. The influences of damping, actuation, and fringe effect on the resonator response are found.


Sign in / Sign up

Export Citation Format

Share Document