Study on Nucleate Boiling Heat Transfer by Measuring Detailed Surface Temperature Distribution and Variation With Infrared Radiation Camera

Author(s):  
Kazuki Takahashi ◽  
Yasuo Koizumi

Pool boiling heat transfer experiments were performed for water at 101 kPa to examine elementary process of nucleate pool boiling. The heat transfer surface was made from a copper printed circuit board. The size of the heat transfer surface was 10 mm × 10 mm. Direct current was supplied to the heat transfer surface to heat it up. The Bakelite plate of the backside of the copper layer was taken off at the center portion of the heat transfer surface. The test vessel was a closed 200-mm cube container made of duralumin. It has transparent view windows on opposing side walls made of a Polycarbonate plate to observe a boiling state. Heat transfer surface was placed at the bottom of the test vessel. Distilled water was used for the experiments. The instantaneous variation of the backside temperature of the heat transfer surface was measured with an infrared radiation camera. Bubble behavior was recorded with a high speed video camera. The time and the space resolution of the infrared radiation cameras used in present experiments were 60 Hz and 0.1 mm × 0.1 mm, and 120 Hz and 0.315 mm × 0.315 mm, respectively. When the heat flux was increased, the instantaneous surface temperature variation explain the pattern. In the isolated bubble region, surface temperature was uniform during waiting time. When boiling bubble generation started, a large dip in the surface temperature was formed under the bubble. After the bubble left from the heat transfer surface, the surface temperature returned to former uniform temperature distribution. Surface temperature was not affected by the bubble generation beyond 1.8 mm from the center of the bubble. In the intermediate and high heat flux region, the variation of surface temperature and heat flux were small. Rather the heat flux variation range was close to that at the isolated boiling region.

Author(s):  
Yasuo Koizumi ◽  
Kenta Hayashi

Pool nucleate boiling heat transfer experiments were performed for water at 0.101 MPa to examine the elementary process of the nucleate boiling. Heat transfer surface was made from a copper printed circuit board. Direct current was supplied to heat it up. The Bakelite plate of the backside of a copper layer was taken off at the center portion of the heat transfer surface. The instantaneous variation of the backside temperature of the heat transfer surface was measured with an infrared radiation camera. Bubble behavior was recorded with a high speed video camera. In the isolated bubble region, surface temperature was uniform during waiting time. When boiling bubble generation started, a large dip in the surface temperature was formed under the bubble. After the bubble left from the heat transfer surface, the surface temperature returned to former uniform temperature distribution. Surface temperature was not affected by the bubble generation beyond 1.6 mm from the center of the bubble. In the isolated bubble region, a convection term was approximately 80 % in total heat transfer rate. The importance of the three-phase interface line in the heat transfer should be checked carefully. In the intermediate and high heat flux region, the variation of surface temperature and heat flux were small. Rather those were close to their average values even at critical heat flux condition. It seemed that the large part of the heat transfer surface was covered with water even at the critical heat flux condition. The heat flux at the area that appeared to be the three-phase contact line was not so high and close to the average heat flux.


Author(s):  
Shinichiro Uesawa ◽  
Yasuo Koizumi ◽  
Mitsuhiko Shibata ◽  
Hiroyuki Yoshida

Pool nucleate boiling heat transfer experiments of the 3.5 - 10wt% NaCl solution, the real seawater and the 3.5 - 10wt% artificial seawater solution as well as distilled water for the basis of comparison were performed to examine the effect of salts on boiling heat transfer. Seawater was injected into the reactor cores in the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company. This study intended to provide base data to consider reactor core cooling by seawater. Boiling curves of the 3.5 - 10wt% NaCl solution, the real seawater and the 3.5 - 10wt% artificial seawater solutions as well as distilled water were well predicted with the Rohsenow pool nucleate boiling heat transfer correlation although the curves were a little shifted to the higher wall superheat region. The formation of secondary coalescent large bubble was suppressed in the experiments of the NaCl solutions, real seawater and the artificial seawater solutions, and small primary bubbles detached directly from the heat transfer surface. Sea salt deposition was observed only in the experiments of the 7.0wt% and 10wt% artificial seawater solutions. The deposited salt was calcium sulfate. Slow heat transfer surface temperature excursion occurred in the experiments of the 7.0wt% and 10wt% artificial seawater solutions after the heat flux was raised to 600 kW/m2 and 120 kW/m2, respectively. The critical heat flux of the 7.0wt% and 10wt% artificial seawater solutions were 600 kW/m2 and 120 kW/m2, respectively if the occurrence of the slow heat transfer surface temperature excursion was defined as the critical heat flux condition. The heat transfer surface temperature excursion might be caused by the growth of the deposited salt layer.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


Author(s):  
Kuang-Han Chu ◽  
Ryan Enright ◽  
Evelyn N. Wang

We experimentally investigated pool boiling on microstructured surfaces which demonstrate high critical heat flux (CHF) by enhancing wettability. The microstructures were designed to provide a wide range of well-defined surface roughness to study roughness-augmented wettability on CHF. A maximum CHF of 196 W/cm2 and heat transfer coefficient (h) greater than 80 kW/m2K were achieved. To explain the experimental results, a model extended from a correlation developed by Kandlikar was developed, which well predicts CHF in the complete wetting regime where the apparent liquid contact angle is zero. The model offers a first step towards understanding complex pool boiling processes and developing models to accurately predict CHF on structured surfaces. The insights gained from this work provide design guidelines for new surface technologies with higher heat removal capability that can be effectively used by industry.


Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Tomonari Yamada

Boiling heat transfer of thin-rectangular channels of the width of 10 mm has been examined. The height of the flow channel was in a range from 0.6 mm to 0.4 mm. Experimental fluid was water. Bubbly flow, slug flow, semi annular flow and annular flow were observed. The flow pattern transition agreed well with the Baker flow pattern map for the usual sized flow path. The critical heat flux was lower than the value of the usual sized flow channel. The Koizumi and Ueda method predicted well the trend of the critical heat flux of the present experiments. At the critical heat flux condition, the heat transfer surface was covered by liquid slug, a large bubble pushed away the liquid slug, a dry area was formed on the heat transfer surface and then liquid slug came around to cover the heat transfer surface again. This process repeated rapidly. Following this observation, a heat transfer surface temperature calculation model at the critical heat flux condition was proposed. The calculated result re produced the experimental result.


Sign in / Sign up

Export Citation Format

Share Document