Modeling of Near-Field Concentrated Solar Thermophotovoltaic Microsystem

Author(s):  
Mahmoud Elzouka ◽  
Mukesh Kulsreshath ◽  
Sidy Ndao

Modeling of a near-field concentrated solar thermophotovoltaic (STPV) microsystem is carried out to investigate the use of STPV-based solid-state energy conversion as a high power density MEMS power generator. Near-field radiation can be realized between two closely separated surfaces (i.e. order of radiation wavelength), resulting in the enhancement of the heat radiation flux orders of magnitudes higher than the blackbody limit, consequently increasing cell output power density. The Near-field STPV model consists of an absorber/emitter model used to estimate the net power absorbed from solar irradiance, a near-field radiation transfer model to evaluate the power tunneled from the emitter to the PV cell at different separation distances, and a PV cell model to determine the photocurrent generated due to thermal radiation absorbed. Results reveal that decreasing separation distance between the emitter and the PV cell increases the absorber/emitter thermal efficiency, increases conversion efficiency, and the power density (×100 far-field). The results also predict increase in cooling power requirement as the separation distance is decreased, which may be a limiting design parameter for near-field STPV microsystems. Based on the model, an overall conversion efficiency of 17% at a separation distance of 10 nm and emitter temperature of 2000 K with solar concentration 6000 sun can be reached; this corresponds to an output power density of 9×105 W/m2.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rohith Mittapally ◽  
Byungjun Lee ◽  
Linxiao Zhu ◽  
Amin Reihani ◽  
Ju Won Lim ◽  
...  

AbstractThermophotovoltaic approaches that take advantage of near-field evanescent modes are being actively explored due to their potential for high-power density and high-efficiency energy conversion. However, progress towards functional near-field thermophotovoltaic devices has been limited by challenges in creating thermally robust planar emitters and photovoltaic cells designed for near-field thermal radiation. Here, we demonstrate record power densities of ~5 kW/m2 at an efficiency of 6.8%, where the efficiency of the system is defined as the ratio of the electrical power output of the PV cell to the radiative heat transfer from the emitter to the PV cell. This was accomplished by developing novel emitter devices that can sustain temperatures as high as 1270 K and positioning them into the near-field (<100 nm) of custom-fabricated InGaAs-based thin film photovoltaic cells. In addition to demonstrating efficient heat-to-electricity conversion at high power density, we report the performance of thermophotovoltaic devices across a range of emitter temperatures (~800 K–1270 K) and gap sizes (70 nm–7 µm). The methods and insights achieved in this work represent a critical step towards understanding the fundamental principles of harvesting thermal energy in the near-field.


2007 ◽  
Vol 5 ◽  
pp. 189-195
Author(s):  
R. Herschmann ◽  
O. Büchel

Abstract. This paper examines the radiation characteristics of a contact emitter conceived for application in hyperthermia and microwave reflex therapy. It is important to analyse the distribution of power density in the near field area, as the radiator's therapeutic sphere of activity is localized here. The contact emitter is a coaxial radiator with an eccentric course of the inner conductor. According to Huygens principle, a theoretical view of the near field radiation characteristics is made by determining the equivalent current densities in the emitter aperture. It is shown that by an eccentric shift of the inner conductor, an almost isotropic near field radiation pattern and power density can be achieved. For this, the electromagnetic field in the emitter aperture is determined by using a Bipolar coordinate system. This calculation considers only the fundamental TEM mode of the contact emitter. Besides the theoretical results near and far fields are simulated using the programme system Ansoft HFSS.


Author(s):  
J. I. Watjen ◽  
X. L. Liu ◽  
B. Zhao ◽  
Z. M. Zhang

Near-field thermophotovoltaic (NFTPV) devices have received much attention lately as attractive energy harvesting systems, whereby a heated thermal emitter exchanges super-Planckian near-field radiation with a photovoltaic (PV) cell to generate electricity. This work describes the use of a grating structure to enhance the power throughput of NFTPV devices, while increasing thermal efficiency by ensuring that a large portion of the radiation entering the PV cell is above the bandgap. The device is modeled as a one-dimensional high-temperature tungsten grating on a tungsten substrate that radiates photons to a room-temperature In0.18Ga0.82Sb PV cell through a vacuum gap of several tens of nanometers. Scattering theory is used along with the rigorous coupled-wave analysis to calculate the radiation exchange between the grating emitter and the PV cell. A parametric study is performed by varying the grating depth, period, and ridge width in the range that can be fabricated using available fabrication technologies. By optimizing the grating parameters, it is found that the power output can be improved by 40% while increasing the energy efficiency by 6% as compared with the case of a flat tungsten emitter. Reasons for the enhancement are investigated and found to be due to the surface plasmon polariton resonance, which shifts towards lower frequencies. This work shows a possible way of improving NFTPV and sheds light on how grating structures interact with thermal radiation at the nanoscale.


Author(s):  
Janmejaya Pradhan ◽  
Satya Ranjan Pattanaik

The small signal characteristics of DDR IMPATTs based on GaAs designed to operate at mm-wave window frequencies such as 94, 140, and 220 GHz are presented in this chapter. Both the DC and Small signal performance of the above-mentioned devices are investigated by using a small signal simulation technique developed by the authors. The efficiency, output power and power density of GaAs IMPATT is higher than that of Si IMPATT. Results show that the DDR IMPATTs based on GaAs are most suitable for generation of RF power with maximum conversion efficiency up to 220 GHz. The noise behavior of GaAs IMPATT yield less noise as compared to Si IMPATT.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


2013 ◽  
Vol 718-720 ◽  
pp. 1792-1796
Author(s):  
Zhong Qun Li ◽  
Kai Xie ◽  
Ying Hao Ye ◽  
Rong Bin Guo ◽  
Xu Fei Wang

A non-contact testing method is proposed for encapsulation treated or insulation coated switching power supplies, which is implemented by reconstructing the pulse width modulation (PWM) signal of switching converters from the near field radiation of magnetic components. The radiation pattern of a buck converter is investigated, and the magnetic field sensing probe and PWM signal reconstruction circuit are also illustrated. The reconstruction testing is carried out on a buck converter; the duty cycle error of the reconstructed PWM signal is less than 0.2%, which validates the proposed method.


2007 ◽  
Vol 20 (6) ◽  
pp. 597-604
Author(s):  
Xue-feng Shang ◽  
Qi-ming Liu ◽  
Hai-ming Zhang ◽  
Xiao-fei Chen

Sign in / Sign up

Export Citation Format

Share Document