Enabling Right-Provisioned Microprocessor Architectures for the Internet of Things

Author(s):  
Tosiron Adegbija ◽  
Anita Rogacs ◽  
Chandrakant Patel ◽  
Ann Gordon-Ross

The Internet of Things (IoT) consists of embedded low-power devices that collect and transmit data to centralized head nodes that process and analyze the data, and drive actions. The proliferation of these connected low-power devices will result in a data explosion that will significantly increase data transmission costs with respect to energy consumed and latency. Edge computing performs computations at the edge nodes prior to data transmission to interpret and/or utilize the data, thus reducing transmission costs. In this work, we seek to understand the interactions between IoT applications’ execution characteristics (e.g., compute/memory intensity, cache miss rates, etc.) and the edge nodes’ microarchitectural characteristics (e.g., clock frequency, memory capacity, etc.) for efficient and effective edge computing. Thus, we present a broad and tractable IoT application classification methodology and using this classification, we analyze the microarchitectural characteristics of a wide range of state-of-the-art embedded system microprocessors and evaluate the microprocessors’ applicability to IoT computation using various evaluation metrics. We also investigate and quantify the impact of leakage power reduction on the overall energy consumption across different architectures. Our work provides insights into the microarchitectural characteristics’ impact on system performance and efficiency for various IoT application requirements. Our work also provides a foundation for the analysis and design of a diverse set of microprocessor architectures for IoT edge computing.

Author(s):  
Yaarob Al-Nidawi ◽  
Mahmood Zaki Abdullah

The integration of low-power devices in different aspects of life has increased the challenges of mitigating the impact of the heterogeneity of different related technologies. Accordingly, the Internet of Things context is an umbrella that diffuses different proprietary protocols into standardized forms to overcome the heterogeneity problem. The recent IEEE 1609.2-2016 standard is tackling the issue of wireless access security in the vehicular environment. An obstacle arose by which Internet of Things-based, low-power devices are integrated into the Internet of Vehicles cloud. In turn, the overhead of Internet of Vehicles-based protocols must be analyzed regarding the adaptability of low-power devices in the vehicular environment. This paper investigates the burden of the IEEE 1609.2 security stack on Internet of Things-based, limited-capability devices and defines the possible approaches to incorporate these low-power devices within the vehicular network under the IEEE 1609.2 standard. The proposed methodology, through the conducted simulations, demonstrates low security overhead with a 40% reduction in consumed energy over the default WAVE stack. In addition, the results show that including low-power devices within the Internet of Vehicles paradigm is possible, but still more enhancements and contributions are required to minimize the overhead of the WAVE security stack.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


2014 ◽  
Vol 998-999 ◽  
pp. 1374-1377
Author(s):  
Da Hui Li

This article introduces the services and development of the Internet of Things, and analyzes the driving forces and obstacles behind such development. Looking at application types and the different development stages of the Internet of Things, this article categorizes its services into four types: identity related services, information aggregation services, collaborative-aware services, and ubiquitous services. For the first two types of services, applications and system framework are discussed; for the last two types, development trends are discussed. Services provided by the Internet of Things will gradually be integrated into human life and society; with the development of the Internet of Things, applications will evolve from relatively simple identity-related and information aggregation-related applications, to collaboratively-aware and finally ubiquitous applications. It will then be possible for the Internet of Things to be fully integrated with Internet and telecommunications networks


2018 ◽  
Vol 5 (2) ◽  
pp. 1275-1284 ◽  
Author(s):  
Gopika Premsankar ◽  
Mario Di Francesco ◽  
Tarik Taleb

Sign in / Sign up

Export Citation Format

Share Document