Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

Author(s):  
Beric E. Wells ◽  
Judith Ann Bamberger ◽  
Kurt P. Recknagle ◽  
Carl W. Enderlin ◽  
Michael J. Minette ◽  
...  

Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94 μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.


2011 ◽  
Vol 677 ◽  
pp. 483-502 ◽  
Author(s):  
C.-F. TAI ◽  
S. BIAN ◽  
D. HALPERN ◽  
Y. ZHENG ◽  
M. FILOCHE ◽  
...  

The liquid lining in small human airways can become unstable and form liquid plugs that close off the airways. Direct numerical simulations are carried out on an airway model to study this airway instability and the flow-induced stresses on the airway walls. The equations governing the fluid motion and the interfacial boundary conditions are solved using the finite-volume method coupled with the sharp interface method for the free surface. The dynamics of the closure process is simulated for a viscous Newtonian film with constant surface tension and a passive core gas phase. In addition, a special case is examined that considers the core dynamics so that comparisons can be made with the experiments of Bian et al. (J. Fluid Mech., vol. 647, 2010, p. 391). The computed flow fields and stress distributions are consistent with the experimental findings. Within the short time span of the closure process, there are large fluctuations in the wall shear stress. Furthermore, dramatic velocity changes in the film during closure indicate a steep normal stress gradient on the airway wall. The computational results show that the wall shear stress, normal stress and their gradients during closure can be high enough to injure airway epithelial cells.



Author(s):  
Michal M. Mielnik ◽  
Lars R. Sætran

A micro-PIV system is presented in detail, pointing out important aspects of micro-PIV system design cruicial for its operation. The micro-PIV system is then applied on a sinusoidal microchannel, and the fluid motion inside the device is presented and discussed. The wall shear stress at the waist of the channel is measured to be up to 60% higher than the wall shear stress in a conventional parallel-plate flow. The results suggest that altering of channel geometry may contribute to better design of cross-flow microfiltration units, in terms of reduced clogging by shear-control of bacterial motion. Furthermore, the flow is shown to exhibit a strong Reynolds number dependence, characterised by the onset of periodic distortion imposed on the flow by the sinusoidal walls occuring between Re = 2 and Re = 10.



Vestnik IGEU ◽  
2020 ◽  
pp. 14-25
Author(s):  
A.D. Lipagina ◽  
A.I. Khaibullina ◽  
A.A. Sinyavin ◽  
V.K. Il’in

Scale buildup on the tube surface in the intertubular space of the shell-and-tube heat exchangers reduce their efficiency. The topical issue is the search for clean-in-place methods. The tube bundle cleaning by low-frequency nonsymmetrical pulsations is understudied. The aim of the paper is numerical analysis of the influence of pulsations on the key cleaning factors (wall shear stress, erosion rate). For the numerical experiment the symmetrical element of a staggered tube bundle with a crossflow of turbine oil (T22) (Re = 100; Pr = 273) and the quartz sand as a cleaning agent is used. The model of incompressible fluid flow comprises the system of Navier-Stokes and continuity equations, the turbulent model Spallart-Allmaras. The motion of solid particles is calculated by the discrete element method, and the erosion rate is calculated by the Campos-Amezcua method. In unsteady conditions with time step 0,001 sec, numerical simulations are performed in Ansys Fluent. Pulsations are generated on entry boundary condition. To estimate the flow pulsation efficiency, the wall shear stresses on the central tube of bundle and erosion rates are compared under the same average rate in steady and nonsteady flow. It is found that asymmetrical flow pulsations (duty cycle 0,25) increase of wall shear stress in all the modes under consideration (amplitude 25 ≤ A/d ≤ 35, frequency 0,3125 ≤ f ≤ 0,5 Гц), but an increase in erosion rate takes place only at maximal frequency. The amplitude variation displaces the localization of the reinforcing effect of flow pulsations on the tube surface. However, it is found that flow pulsations increase the wall shear stress and erosion rate in the front and rear sides of the tubes that are most susceptible to scale buildup. The conducted analysis confirms the significant influence of asymmetrical pulsations on cleaning factors and the perspective of their application for intensification of tube bundle cleaning. The detected effects can be the base to develop new technologies of cleaning intertubular space of heat exchangers.



Author(s):  
Brett Freidkes ◽  
David A. Mills ◽  
Casey Keane ◽  
Lawrence S. Ukeiley ◽  
Mark Sheplak


2020 ◽  
Vol 59 (SK) ◽  
pp. SKKE16 ◽  
Author(s):  
Ryo Nagaoka ◽  
Kazuma Ishikawa ◽  
Michiya Mozumi ◽  
Magnus Cinthio ◽  
Hideyuki Hasegawa


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1587
Author(s):  
Dolat Khan ◽  
Ata ur Rahman ◽  
Gohar Ali ◽  
Poom Kumam ◽  
Attapol Kaewkhao ◽  
...  

Due to the importance of wall shear stress effect and dust fluid in daily life fluid problems. This paper aims to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is considered between two parallel plates that are non-conducting. Due to the transformation of heat, the fluid flow is generated. We consider every dust particle having spherical uniformly disperse in the base fluid. The perturb solution is obtained by applying the Poincare-Lighthill perturbation technique (PLPT). The fluid velocity and shear stress are discussed for the different parameters like Grashof number, magnetic parameter, radiation parameter, and dusty fluid parameter. Graphical results for fluid and dust particles are plotted through Mathcad-15. The behavior of base fluid and dusty fluid is matching for different embedded parameters.



Sign in / Sign up

Export Citation Format

Share Document