Energy Harvesting From Smart Materials

Author(s):  
Nathan S. Hosking ◽  
Zahra Sotoudeh

In this paper, we study fully coupled electromagnetic-elastic behaviors present in the structures of smart beams using variational asymptotic beam sections and geometrically exact fully intrinsic beam equations. We present results for energy harvesting from smart beams under various oscillatory loads in both the axial and transverse directions and calculate the corresponding deformations. The magnitude of these loads are varied to show the generalized trends produced by piezoelectric materials. Smart materials change mechanical energy to electrical energy; therefore, changing the structural dynamic behavior of the structure and its stiffness matrix. A smart structure can be designed to undergo larger loads without changing the surface area of the cross-section.

Author(s):  
Nathan S. Hosking ◽  
Zahra Sotoudeh

In this paper, we study fully coupled electromagnetic-elastic behaviors present in the structures of smart beams using variational asymptotic beam sections and geometrically exact fully intrinsic beam equations combined in a consistent theory. We present results for smart beams under various oscillatory loads in both the axial and transverse directions and calculate the corresponding deformations. Recovery equations are employed to construct the full 3D stress and strain components in order to complete a full stress / strain analysis. Smart materials change mechanical energy to electrical energy; therefore, changing the structural dynamic behavior of the structure and its stiffness matrix.


Author(s):  
Sunija Sukumaran ◽  
Samir Chatbouri ◽  
Didier Rouxel ◽  
Etienne Tisserand ◽  
Frédéric Thiebaud ◽  
...  

Energy harvesting is one of the most promising research areas to produce sustainable power sources from the ambient environment. Which found applications to attain the extensive lifetime self-powered operations of various devices such as MEMS wireless sensors, medical implants and wearable electronic devices. Piezoelectric nanogenerators can efficiently convert the vastly available mechanical energy into electrical energy to meet the requirements of low-powered electronic devices. Among the piezoelectric materials, poly (vinylidene fluoride) (PVDF) and its copolymers are extensively studied for the development of energy harvesting devices. Due to the outstanding properties such as high flexibility, ease of processing, long-term stability, biocompatibility makes them a promising candidate for piezoelectric generators. Nevertheless, compared to piezoceramic materials, PVDF based generators produce lower piezoresponse. Over the last decades, tremendous research activities have been reported to endorse the performance of PVDF based energy harvesters. This review article mainly focused on the recent progress in the performance improvement with processing methods, piezoelectric materials, different filler loading. The new developments and design structures will lead to an increase in piezoelectricity, alignment of dipoles, dielectric properties and subsequently enhance the output performance of the device. Electronic circuits play a vital role in energy harvesting to efficiently collect the developed charge from the device. Here, we have proposed a detailed description of the electronic circuits. Also, in the application part deals with the recent progress in flexible, biomedical and hybrid generators based on PVDF polymers.


2018 ◽  
Vol 85 (9) ◽  
pp. 565-579 ◽  
Author(s):  
Ana Carolina Cellular ◽  
Luciana L. da Silva Monteiro ◽  
Marcelo A. Savi

Abstract Vibration-based energy harvesting has the main objective to convert available environmental mechanical energy into electrical energy. Piezoelectric materials are usually employed to promote the mechanical-electrical conversion. This work deals with a numerical investigation that analyzes the influence of nonlinear effects in piezoelectric vibration-based energy harvesting. Duffing-type oscillator that can be either monostable or bistable represents mechanical nonlinearities. A quadratic constitutive electro-mechanical coupling model represents piezoelectric nonlinearities. The system performance is evaluated for different system characteristics being monitored by the input and the generated power. Numerical simulations are carried out exploring dynamical behavior of energy harvesting system evaluating different kinds of responses, including periodic and chaotic regimes.


2021 ◽  
Vol 4 (3) ◽  
pp. 57
Author(s):  
Chouaib Ennawaoui ◽  
Abdelowahed Hajjaji ◽  
Cédric Samuel ◽  
Erroumayssae Sabani ◽  
Abdelkader Rjafallah ◽  
...  

This paper investigates energy harvesting performances of porous piezoelectric polymer films to collect electrical energy from vibrations and power various sensors. The influence of void content on the elastic matrix, dielectric, electrical, and mechanical properties of porous piezoelectric polymer films produced from available commercial poly(ethylene-co-vinyl acetate) using an industrially applicable melt-state extrusion method (EVA) were examined and discussed. Electrical and mechanical characterization showed an increase in the harvested current and a decrease in Young’s modulus with the increasing ratio of voids. Thermal analysis revealed a decrease in piezoelectric constant of the porous materials. The authors present a mathematical model that is able to predict harvested current as a function of matrix characteristics, mechanical excitation and porosity percentage. The output current is directly proportional to the porosity percentage. The harvested power significantly increases with increasing strain or porosity, achieving a power value up to 0.23, 1.55, and 3.87 mW/m3 for three EVA compositions: EVA 0%, EVA 37% and EVA 65%, respectively. In conclusion, porous piezoelectric EVA films has great potential from an energy density viewpoint and could represent interesting candidates for energy harvesting applications. Our work contributes to the development of smart materials, with potential uses as innovative harvester systems of energy generated by different vibration sources such as roads, machines and oceans.


2018 ◽  
Vol 53 (24) ◽  
pp. 3349-3361 ◽  
Author(s):  
Nabil Chakhchaoui ◽  
H Jaouani ◽  
H Ennamiri ◽  
A Eddiai ◽  
A Hajjaji ◽  
...  

In the last few years, a lot of research focused on increasing of smart textiles products such as woven and knitted structures, which are able to show significant change in their mechanical properties (such as shape and stiffness), in a practical way in response to the stimuli. In this paper, we investigate the potential of a flexible piezoelectric film stuck onto three woven textile matrices: cotton, polyester/cotton, and Kermel, for harvesting mechanical energy from the textile and converting it into electrical energy. At first, a brief introduction of energy harvesting using the piezoelectric material and smart textile is presented. Furthermore, a basic model showing the operation of polyvinylidene fluoride with 33 mode is established. The second part is focused on standard approach model of energy harvesting based on resistive load and freestanding piezo-polymer for the examination of the performance of 33-mode polyvinylidene fluoride energy harvester and the prediction of harvested energy quantity. A power analytical model generated by a smart structure type polyvinylidene fluoride that can be stuck onto fabrics and flexible substrates is investigated. On the other hand, the effects of various substrates and the sticking of these substrates on the piezoelectric material are reported. Additionally, the output power density of this theoretical model of woven textile matrices could reach a value that was seven times higher than freestanding piezo-polymer. Three types of the substrates have been compared as function of excitation frequency and the compressive applied force.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 141
Author(s):  
Pornrawee Thonapalin ◽  
Sontipee Aimmanee ◽  
Pitak Laoratanakul ◽  
Raj Das

Piezoelectric materials are used to harvest ambient mechanical energy from the environment and supply electrical energy via their electromechanical coupling property. Amongst many intensive activities of energy harvesting research, little attention has been paid to study the effect of the environmental factors on the performance of energy harvesting from laminated piezoelectric materials, especially when the temperature in the operating condition is different from the room temperature. In this work, thermomechanical effects on the electrical energy harvested from a type of laminated piezoelectric devices, known as thin layer unimorph ferroelectric driver (called THUNDER) were investigated. Three configurations of THUNDER devices were tested in a controlled temperature range of 30–80 °C. The THUNDER devices were pushed by using a cam mechanism in order to generate required displacements and frequencies. The experimental results exhibited a detrimental effect of the elevated temperature on the generated voltage and the harvested electrical power. It is due to changes in residual stress and geometry. These results are advantageous for many applications of the THUNDER devices and for future design of a new laminated piezoelectric sensor and energy harvester in an elevated temperature environment.


2021 ◽  
pp. 2100864
Author(s):  
Susmriti Das Mahapatra ◽  
Preetam Chandan Mohapatra ◽  
Adrianus Indrat Aria ◽  
Graham Christie ◽  
Yogendra Kumar Mishra ◽  
...  

2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


Sign in / Sign up

Export Citation Format

Share Document