scholarly journals Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications

2021 ◽  
Vol 4 (3) ◽  
pp. 57
Author(s):  
Chouaib Ennawaoui ◽  
Abdelowahed Hajjaji ◽  
Cédric Samuel ◽  
Erroumayssae Sabani ◽  
Abdelkader Rjafallah ◽  
...  

This paper investigates energy harvesting performances of porous piezoelectric polymer films to collect electrical energy from vibrations and power various sensors. The influence of void content on the elastic matrix, dielectric, electrical, and mechanical properties of porous piezoelectric polymer films produced from available commercial poly(ethylene-co-vinyl acetate) using an industrially applicable melt-state extrusion method (EVA) were examined and discussed. Electrical and mechanical characterization showed an increase in the harvested current and a decrease in Young’s modulus with the increasing ratio of voids. Thermal analysis revealed a decrease in piezoelectric constant of the porous materials. The authors present a mathematical model that is able to predict harvested current as a function of matrix characteristics, mechanical excitation and porosity percentage. The output current is directly proportional to the porosity percentage. The harvested power significantly increases with increasing strain or porosity, achieving a power value up to 0.23, 1.55, and 3.87 mW/m3 for three EVA compositions: EVA 0%, EVA 37% and EVA 65%, respectively. In conclusion, porous piezoelectric EVA films has great potential from an energy density viewpoint and could represent interesting candidates for energy harvesting applications. Our work contributes to the development of smart materials, with potential uses as innovative harvester systems of energy generated by different vibration sources such as roads, machines and oceans.

Author(s):  
Nathan S. Hosking ◽  
Zahra Sotoudeh

In this paper, we study fully coupled electromagnetic-elastic behaviors present in the structures of smart beams using variational asymptotic beam sections and geometrically exact fully intrinsic beam equations. We present results for energy harvesting from smart beams under various oscillatory loads in both the axial and transverse directions and calculate the corresponding deformations. The magnitude of these loads are varied to show the generalized trends produced by piezoelectric materials. Smart materials change mechanical energy to electrical energy; therefore, changing the structural dynamic behavior of the structure and its stiffness matrix. A smart structure can be designed to undergo larger loads without changing the surface area of the cross-section.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


Author(s):  
Nathan S. Hosking ◽  
Zahra Sotoudeh

In this paper, we study fully coupled electromagnetic-elastic behaviors present in the structures of smart beams using variational asymptotic beam sections and geometrically exact fully intrinsic beam equations combined in a consistent theory. We present results for smart beams under various oscillatory loads in both the axial and transverse directions and calculate the corresponding deformations. Recovery equations are employed to construct the full 3D stress and strain components in order to complete a full stress / strain analysis. Smart materials change mechanical energy to electrical energy; therefore, changing the structural dynamic behavior of the structure and its stiffness matrix.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


2011 ◽  
Vol 22 (18) ◽  
pp. 2215-2228 ◽  
Author(s):  
Jayant Sirohi ◽  
Rohan Mahadik

There has been increasing interest in wireless sensor networks for a variety of outdoor applications including structural health monitoring and environmental monitoring. Replacement of batteries that power the nodes in these networks is maintenance intensive. A wind energy–harvesting device is proposed as an alternate power source for these wireless sensor nodes. The device is based on the galloping of a bar with triangular cross section attached to a cantilever beam. Piezoelectric sheets bonded to the beam convert the mechanical energy into electrical energy. A prototype device of size approximately 160 × 250 mm was fabricated and tested over a range of operating conditions in a wind tunnel, and the power dissipated across a load resistance was measured. A maximum power output of 53 mW was measured at a wind velocity of 11.6 mph. An analytical model incorporating the coupled electromechanical behavior of the piezoelectric sheets and quasi-steady aerodynamics was developed. The model showed good correlation with measurements, and it was concluded that a refined aerodynamic model may need to include apparent mass effects for more accurate predictions. The galloping piezoelectric energy-harvesting device has been shown to be a viable option for powering wireless sensor nodes in outdoor applications.


Author(s):  
Sunija Sukumaran ◽  
Samir Chatbouri ◽  
Didier Rouxel ◽  
Etienne Tisserand ◽  
Frédéric Thiebaud ◽  
...  

Energy harvesting is one of the most promising research areas to produce sustainable power sources from the ambient environment. Which found applications to attain the extensive lifetime self-powered operations of various devices such as MEMS wireless sensors, medical implants and wearable electronic devices. Piezoelectric nanogenerators can efficiently convert the vastly available mechanical energy into electrical energy to meet the requirements of low-powered electronic devices. Among the piezoelectric materials, poly (vinylidene fluoride) (PVDF) and its copolymers are extensively studied for the development of energy harvesting devices. Due to the outstanding properties such as high flexibility, ease of processing, long-term stability, biocompatibility makes them a promising candidate for piezoelectric generators. Nevertheless, compared to piezoceramic materials, PVDF based generators produce lower piezoresponse. Over the last decades, tremendous research activities have been reported to endorse the performance of PVDF based energy harvesters. This review article mainly focused on the recent progress in the performance improvement with processing methods, piezoelectric materials, different filler loading. The new developments and design structures will lead to an increase in piezoelectricity, alignment of dipoles, dielectric properties and subsequently enhance the output performance of the device. Electronic circuits play a vital role in energy harvesting to efficiently collect the developed charge from the device. Here, we have proposed a detailed description of the electronic circuits. Also, in the application part deals with the recent progress in flexible, biomedical and hybrid generators based on PVDF polymers.


Sign in / Sign up

Export Citation Format

Share Document