Transient Response of a Cross Flow Heat Exchanger Subjected to Temperature and Flow Perturbations

Author(s):  
Karthik Silaipillayarputhur ◽  
Stephen A. Idem

The transient performance of a multi-pass cross flow heat exchanger subjected to temperature and mass flow rate perturbations, where the heat exchanger flow circuiting is neither parallel flow nor counter flow, is considered in this work. A detailed numerical study was performed for representative single-pass, two-pass, and three-pass heat exchangers. Numerical predictions were obtained for cases where the minimum capacity rate fluid was subjected to a step change in inlet temperature in absence of mass flow rate perturbations. Likewise, numerical predictions were obtained for the heat exchangers operating initially at steady state, where a step mass flow rate change of the minimum capacity rate fluid was imposed in the absence of any fluid temperature perturbations. The transient performance of this particular heat exchanger configuration subjected to these temperature and flow disturbances has not been discussed previously in the available literature. In the present study the energy balance equations for the hot and cold fluids and the heat exchanger wall were solved using an implicit central finite difference method. A parametric study was conducted by varying the dimensionless quantities that govern the transient response of the heat exchanger over a typical range of values. Because of the storage of energy in the heat exchanger wall, and finite propagation times associated with the inlet perturbations, the outlet temperatures of both fluids do not respond instantaneously. The results are compared with previously published transient performance predictions of multi-pass counter flow and parallel flow heat exchangers.

Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat Sammakia

Heat exchangers are important facilities that are widely used in heating, ventilating, and air conditioning (HVAC) systems. For example, heat exchangers are the primary units used in the design of the heat transfer loops of cooling systems for data centers. The performance of a heat exchanger strongly influences the thermal performance of the entire cooling system. The prediction of transient phenomenon of heat exchangers is of increasing interest in many application areas. In this work, a dynamic thermal model for a cross flow heat exchanger is solved numerically in order to predict the transient response under step changes in the fluid mass flow rate and the fluid inlet temperature. Transient responses of both the primary and secondary fluid outlet temperatures are characterized under different scenarios, including fluid mass flow rate change and a combination of changes in the fluid inlet temperature and the mass flow rate. In the ε-NTU (number of transfer units) method, the minimum capacity, denoted by Cmin, is the smaller of Ch and Cc. Due to a mass flow rate change, Cmin may vary from one fluid to another fluid. The numerical procedure and transient response regarding the case of varying Cmin are investigated in detail in this study. A review and comparison of several journal articles related to the similar topic are performed. Several sets of data available in the literatures which are in error are studied and analyzed in detail.


2021 ◽  
Vol 39 (4) ◽  
pp. 1225-1235
Author(s):  
Ajay K. Gupta ◽  
Manoj Kumar ◽  
Ranjit K. Sahoo ◽  
Sunil K. Sarangi

Plate-fin heat exchangers provide a broad range of applications in many cryogenic industries for liquefaction and separation of gasses because of their excellent technical advantages such as high effectiveness, compact size, etc. Correlations are available for the design of a plate-fin heat exchanger, but experimental investigations are few at cryogenic temperature. In the present study, a cryogenic heat exchanger test setup has been designed and fabricated to investigate the performance of plate-fin heat exchanger at cryogenic temperature. Major parameters (Colburn factor, Friction factor, etc.) that affect the performance of plate-fin heat exchangers are provided concisely. The effect of mass flow rate and inlet temperature on the effectiveness and pressure drop of the heat exchanger are investigated. It is observed that with an increase in mass flow rate effectiveness and pressure drop increases. The present setup emphasis the systematic procedure to perform the experiment based on cryogenic operating conditions and represent its uncertainties level.


2021 ◽  
Author(s):  
Shoaib A. Shah

A Diagnostics, Prognostics and Health Management (DPHM) solution is proposed for the operation of the aircraft environmental control system (ECS) cross flow heat exchanger. In particular, a dynamic model is derived and applied to on-line detection of fouling in the aircraft ECS cross flow plate-and-fin heat exchanger. Predictive maintenance actions can be scheduled as per the on-line detected fouling status of the specific component, supporting condition based maintenance. The heat exchanger model is of the lumped state space form, where the state consists of the core and fin temperatures. The ratios of the thermal capacities of the masses of the two air streams to the thermal capacity of the core itself are neglected, and the model parameters' functional dependency on mass flow rate and influence of secondary surfaces (fins) are taken into account in order to accurately describe the dynamic behavior of the heat exchanger. Since the parameters are functions of mass flow rate, as are the core and fin temperatures, and the model is nonlinear in the state variables, an extended Kalman filtering (EKF) algorithm is applied to estimate the state dependent parameters. The effectiveness of the model's formulation is supported by the quality of the corresponding predicted results, which in turn are validated via experimental tests.


2020 ◽  
Vol 6 (11) ◽  
pp. 14-20
Author(s):  
Rohit Kumar Gaur ◽  
Dr. Shashi Kumar Jain ◽  
Dr. Sukul Lomash

A heat exchanger is a device used to transfer thermal energy between two or more liquids, between a solid surface and a liquid, or between solid particles and a liquid at different temperatures and in thermal contact where shell and tube heat exchangers contain a large number of tubes packed in a jacket whose axes are parallel to those of the shell. Heat transfer occurs when one fluid flows into the pipes while the other flows out of the pipes through the jacket. In industry, three-tube heat exchanger tubes are used as condensers, evaporators, sub cooler, heat recovery heat exchangers, etc. The three concentric tube heat exchanger is a constructively modified version of the double concentric tube heat exchanger as an intermediate tube adds some advantages over the double tube heat exchangers in that it is larger tube surface area heat transfer per unit of length.  In the present study, the triple tube heat exchanger is further modified by inserting helical baffle over the surface of one of the tubes and observed turbulence flow which may lead to high heat transfer rates between the fluids of heat exchanger. Further, the Reynolds number, Nusselt number, friction factor of the flow at different mass flow rates of the hot fluid while keeping a constant mass flow rate of cold and normal temperature fluids were calculated. It was found that as the mass flow rate of the fluid increases the Reynolds number increases, the turbulence in the flow will increase which will cause the intermixing of the fluid, higher the rate of intermixing, more will be the heat transfer of the system.  


2005 ◽  
Vol 127 (1) ◽  
pp. 57-64 ◽  
Author(s):  
T. Korakianitis ◽  
J. I. Hochstein ◽  
D. Zou

Instantaneous-response and transient-flow component models for the prediction of the transient response of gas turbine cycles are presented. The component models are based on applications of the principles of conservation of mass, energy, and momentum. The models are coupled to simulate the system transient thermodynamic behavior, and used to predict the transient response of a closed-cycle regenerative Brayton cycle. Various system transients are simulated using: the instantaneous-response turbomachinery models coupled with transient-flow heat-exchanger models; and transient-flow turbomachinery models coupled with transient-flow heat-exchanger models. The component sizes are comparable to those for a solar-powered Space Station (radial turbomachinery), but the models can easily be expanded to other applications with axial turbomachinery. An iterative scheme based on the principle of conservation of working-fluid mass in the system is used to compute the mass-flow rate at the solar-receiver inlet during the transients. In the process the mass-flow rate of every component at every time step is also computed. Representative results of different system models are compared and discussed.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012095
Author(s):  
M. Fuchs ◽  
D. Heinrich ◽  
X. Luo ◽  
S. Kabelac

Abstract Due to increased distribution of high-temperature processes in energy and process plants, more efficient and compact high-temperature heat exchangers are being developed. The additive manufacturing allows the construction of compact sizes and application-specific requirements. To evaluate the thermal performance of these heat exchangers, experimental investigations are evident. This study presents a test rig for testing compact high-temperature heat exchangers as well as a first set of thermal performance data of an additively manufactured plate-fin heat exchanger. The test rig can provide a maximum fluid temperature of 900°C and a maximum mass flow rate of 0.8 kg/min. A steam unit can add steam to the fluid stream to evaluate the influence of gas radiation on the thermal performance. The capabilities of this test rig are being tested with the plate-fin heat exchanger, varying the mass flow rate between 0.2 - 0.52 kg/min at a hot and cold inlet temperature of 750°C and 250°C. The overall effectiveness of the heat exchanger is approx. 0.9.


2021 ◽  
Author(s):  
Shoaib A. Shah

A Diagnostics, Prognostics and Health Management (DPHM) solution is proposed for the operation of the aircraft environmental control system (ECS) cross flow heat exchanger. In particular, a dynamic model is derived and applied to on-line detection of fouling in the aircraft ECS cross flow plate-and-fin heat exchanger. Predictive maintenance actions can be scheduled as per the on-line detected fouling status of the specific component, supporting condition based maintenance. The heat exchanger model is of the lumped state space form, where the state consists of the core and fin temperatures. The ratios of the thermal capacities of the masses of the two air streams to the thermal capacity of the core itself are neglected, and the model parameters' functional dependency on mass flow rate and influence of secondary surfaces (fins) are taken into account in order to accurately describe the dynamic behavior of the heat exchanger. Since the parameters are functions of mass flow rate, as are the core and fin temperatures, and the model is nonlinear in the state variables, an extended Kalman filtering (EKF) algorithm is applied to estimate the state dependent parameters. The effectiveness of the model's formulation is supported by the quality of the corresponding predicted results, which in turn are validated via experimental tests.


2019 ◽  
Vol 8 (3) ◽  
pp. 4442-4449

In this research work, the design of pipe in pipe, shelland-tube and combined heat exchanger (previously mentioned types were combined to consider as one unit) has been made. These three heat exchangers have been utilized for two kinds of flows i.e., parallel as well counter flow types individually. The design of combined heat exchanger takes been proposed with the idea of increasing the heat transfer area and to understand the behavior of various parameters involved by comparing with the individual heat exchangers. 75:25 aqueous Ethylene Glycols, have been used as the working fluid in all three heat exchangers of counter as well parallel flow conditions. Total quantity of working fluid is 12 liters, in which 6liters of fluid is used as cold fluid and the other half is used as hot fluid. As a result, overall heat transfer coefficient (U) has been increased with increase of mass flow rate. Highest overall heat transfer coefficient value observed as 1943w/m2 -k at highest mass flow rate (within the considerations of this work) of 0.145 kg/s. The highest decrement in LMTD recorded for 0.0425 to 0.145 increase of mass flow rate is 49.32% in shell-and-tube heat exchanger of parallel flow arrangement. The highest effectiveness is observed for pipe in pipe counter flow heat exchanger case, which is 0.39 at a mass flow rate of 0.145kg/s.


Author(s):  
Tianyi Gao ◽  
Marcelo del Valle ◽  
Alfonso Ortega ◽  
Bahgat G. Sammakia

The cross flow heat exchanger is at the heart of most cooling systems for data centers. Air/Water or air/refrigerant heat exchangers are the principal component in Central Room Air Conditioning (CRAC) units that condition data room air that is delivered through an underfloor plenum. Liquid/air heat exchangers are also increasingly deployed in close-coupled cooling systems such as rear door heat exchangers, in-row coolers, and overhead coolers. In all cases, the performance of liquid/air heat exchangers in both steady state and transient scenarios are of principal concern. Transient scenarios occur either by the accidental failure of the cooling system or by intentional dynamic control of the cooling system. In either scenario, transient boundary conditions involve time-dependent air or liquid inlet temperatures and mass flow rates that may be coupled in any number of potential combinations. Understanding and characterizing the performance of the heat exchanger in these transient scenarios is of paramount importance for designing better thermal solutions and improving the operational efficiency of existing cooling systems. In this paper, the transient performance of water to air cross flow heat exchangers is studied using numerical modeling and experimental measurements. Experimental measurements in 12 in. × 12 in. heat exchanger cores were performed, in which the liquid (water) mass flow rate or inlet temperature are varied in time following controlled functional forms (step jump, ramp). The experimental data were used to validate a transient numerical model developed with traditional assumptions of space averaging of heat transfer coefficients, and volume averaging of thermal capacitances. The complete numerical model was combined with the transient effectiveness methodology in which the traditional heat exchanger effectiveness approach is extended into a transient domain, and is then used to model the heat exchanger transient response. Different transient scenarios were parametrically studied to develop an understanding of the impact of critical variables such as, the fluid inlet temperature variation and the fluid mass flow rate variation, and a more comprehensive understanding of the characteristics of the transient effectiveness. Agreement between the novel transient effectiveness modeling approach and the experimental measurements enable use of the models as verified predictive design tools. Several studies are designed based on the practical problems related to data center thermal environments and the results are analyzed.


Sign in / Sign up

Export Citation Format

Share Document