scholarly journals Optimization of Biporous Micropillar Array for Enhanced Heat Transfer Performance

Author(s):  
Mengyao Wei ◽  
Sivanand Somasundaram ◽  
Bin He ◽  
Qian Liang ◽  
Rishi Raj ◽  
...  

Biporous evaporator wicks for heat pipe and vapor chambers can perform superiorly by reducing the viscous drag with larger pores or channels and simultaneously generate higher capillary pressure with smaller pores radius. Unlike conventional sintered metal biporous wicks, cylindrical silicon micropillar based evaporator with microchannels, possess the following advantages: mature and easily controllable fabrication process, possibility of direct integration with semiconductor devices and no risk of thermal expansion mismatch. In this work, we investigated a biporous wick for the evaporator design, which consists of micro pillar arrays interspersed within micro channels. This design was systematically studied by constructing a mathematical model, by coupling Brinkman’s equation with mass and energy conservation equations, to predict the biporous wicks’ heat transfer performance. In order to find the best combination of geometric factors that give the highest heat flux at a certain superheat value, optimization in Matlab was done. The effect of diameter to pitch ratio, aspect ratio, channel width and contact angle on wick’s permeability, capillary pressure and evaporative heat flux were also investigated. Conclusion was drawn that a higher diameter to pitch ratio of 0.57, reasonable aspect ratio of 1.75∼3.22, island to channel width ratio of around 1.96 are preferred in this kind of biporous wick’s design. Biporous wick show potential to dissipate heat flux of 515.7 W/cm2 at superheat of 40 °C, which is 134 % higher compared to monoporous wick.

Author(s):  
Liang-Han Chien ◽  
Han-Yang Liu ◽  
Wun-Rong Liao

A heat sink integrating micro-channels with multiple jets was designed to achieve better heat transfer performance for chip cooling. Dielectric fluid FC-72 was the working fluid. The heat sink contained 11 micro-channels, and each channel was 0.8 mm high, 0.6 mm wide, and 12 mm in length. There were 3 or 5 pores on each micro-channel. The pore diameters were either 0.24 or 0.4 mm, and the pore spacing ranged from 1.5 to 3 mm. In the tests, the saturation temperature of cooling device was set at 30 and 50°C, and the volume flow rate ranged from 9.1 to 73.6 ml/min per channel (total flow rate = 100∼810 ml/min). The experimental result showed that heat transfer performance increased with increasing flow rate for single phase heat transfer. For heat flux between 20 and 100 kW/m2, the wall superheat decreases with increasing flow rate at a fixed heat flux. However, the influence of the flow rate diminished when the channels are in two phase heat transfer regime. Except for the lowest flow rate (9.1 ml/min), the heat transfer performance increased with increasing jet diameter/spacing ratios. The best surface had three nozzles of 0.4 mm diameter in 3.0 mm jet spacing. It had the lowest thermal resistance of 0.0611 K / W in the range of 200 ∼ 240 W heat input.


Author(s):  
Liang-Han Chien ◽  
S.-Y. Pei ◽  
T.-Y. Wu

This study investigates the influence of the heat flux and mass velocity on convective heat transfer performance of FC-72 in a rectangular channel of 20mm in width and 2 mm in height. The heated side has either a smooth surface or a pin-finned surface. The inlet fluid temperature is maintained at 30°C. The total length of the test channel is 113 mm, with a heated length of 25mm. The flow rate varies between 80 and 960 ml/min, and the heat flux sets between 18 and 50 W/cm2. The experimental results show that the controlling variable is heat flux instead of flow rate because of the boiling activities in FC-72. At a fixed flow rate, the pin-finned surface yields up to 20% higher heat transfer coefficient and greater critical heat flux than those of a smooth surface.


Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


Author(s):  
Yan Wang ◽  
Xiang Ling

The heat transfer performance of fluid flowing in a microchannel was experimentally studied, to meet the requirement of extremely high heat flux removal of microelectronic devices. There were 10 parallel microchannels with rectangular cross-section in the stainless steel plate, which was covered by a glass plate to observe the fluid flowing behavior, and another heating plate made of aluminum alloy was positioned behind the microchannel. Single phase heat transfer and fluid flow downstream the microchannel experiments were conducted with both deionized water and ethanol. Besides experiments, numerical models were also set up to make a comparison with experimental results. It is found that the pressure drop increases rapidly with enlarging Reynolds number (200), especially for ethanol. With comparison, the flow resistance of pure water is smaller than ethanol. Results also show that the friction factor decreases with Reynolds number smaller than the critical value, while increases the velocity, the friction factor would like to keep little changed. We also find that the water friction factors obtained by CFD simulations in parallel microchannels are much larger than experiment results. With heat flux added to the fluid, the heat transfer performance can be enhanced with larger Re number and the temperature rise could be weaken. Compared against ethanol, water performed much better for heat removal. However, with intensive heat flux, both water and ethanol couldn’t meet the requirement and the temperature at outlet would increase remarkably, extremely for ethanol. These findings would be helpful for thermal management design and optimization.


Author(s):  
Samuel Cabrera ◽  
Van P. Carey

Abstract Recent studies have indicated that at slightly superheated surface temperatures, droplet evaporation on a nanoporous superhydrophilic surface exhibits onset of nucleation and nucleate boiling effects similar to pool boiling processes. This paper discusses water droplet evaporation experiments and pool boiling experiments conducted on nanostructured surfaces of a 45° downward facing pyramid copper and aluminum substrate. The nanostructured surfaces were used to conduct both droplet evaporation experiments and pool boiling experiments and thus allow direct comparison of the underlying heat transfer performance and mechanisms for these two different processes. The four surfaces tested were the following: bare copper surface, nanostructured surface on copper, bare aluminum surface, and nanostructured surface on aluminum. Mean heat flux values at varying superheats were obtained through temperature and time measurements. To better understand the heat performance of each surface, the wetting and wicking characteristics of each surface were also tested. Experimental results indicate that many of the mechanisms associated with pool boiling may also play a role in droplet vaporization, and their presence can produce levels of heat transfer performance comparable to, or even higher than, that observed in pool boiling at a comparable wall superheat. The results demonstrate that the nanostructured surface affects onset of nucleate boiling and maximum heat flux in both droplet vaporization and nucleate boiling on these surfaces. The implications of these results for strategies to enhance spray cooling and pool boiling are also discussed.


2013 ◽  
Vol 589-590 ◽  
pp. 559-564
Author(s):  
Xi Bing Li ◽  
Yun Shi Ma ◽  
Xun Wang ◽  
Ming Li

As a highly efficient heat transfer component, a micro heat pipe (MHP) has been widely applied to the situations with high heat flux concentration. However, a MHPs heat transfer performance is affected by many factors, among which, working fluid inventory has great influence on the security, reliability and frost resistance of its heat transfer performance. In order to determine the appropriate working fluid inventory for grooved MHPs, this paper first analyzed the working principle, major heat transfer limits and heat flux distribution law of grooved MHPs in electronic chips with high heat flux concentration, then established a mathematic model for the working fluid inventory in grooved MHPs. Finally, with distilled water being the working fluid, a series of experimental investigations were conducted at different temperatures to test the heat transfer performances of grooved MHPs, which were perfused with different inventories and with different adiabatic section lengths. The experimental results show that when the value of α is roughly within 0.40±0.05, a grooved MHP can acquire its best heat transfer performance, and the working fluid inventory can be determined by the proposed mathematic model. Therefore this study solves the complicated problem of determining appropriate working fluid inventory for grooved MHPs.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Yongtong Li ◽  
Liang Gong ◽  
Minghai Xu ◽  
Yogendra Joshi

Abstract In this paper, a concept of metal foam heat sink with pin fins (MFPF heat sink) is proposed to improve the cooling performance of high-powered electronics with nonuniform heat flux. Numerical simulations are carried out to investigate the thermohydraulic performance of MFPF heat sink, and the metal foam (MF) heat sink and traditional pin fin (PF) heat sink are employed for comparison. The capability of MFPF heat sink in handling nonuniform heat flux is examined under different power levels. It indicates that the MFPF heat sink greatly enhances the heat transfer performance, due to the common effects of the improved flow distribution and enhanced overall effective thermal conductivity (ETC). Results also show that the MFPF heat sink promotes the improvement of the bottom wall temperature uniformity. Porosity has more pronounced effects on heat transfer performance of MFPF heat sink than pore density. A nonuniform distribution heat flux (15–80–15 W/cm2) can be successfully dissipated using the proposed MFPF heat sink with the junction temperature below 95 °C at Re of 500.


Author(s):  
Jacek Marek Matyja ◽  
Tunde Bello-Ochende

In this paper convective heat transfer performance of various duct geometries are compared using theoretical and experimental analyses. The experiments stretch further by perturbing the entrance region of the 2:1 rectangular duct (both inwards and outwards) and to obtain the effect on heat transfer performance. The cross-sectional area and length of the ducts are fixed and constant heat flux is applied to the ducts while cold water is used as the flow stream. The laminar flow regime is analysed. The theoretical and experimental cases are in agreement, with slight deviances attributed to certain assumptions made during the theoretical analysis and non-ideal testing conditions. The analyses concludes that perturbing the entrance region of a standard rectangular duct, both inwards and outwards, has a visible increase in heat transfer performance. The inward perturbed duct shows the highest increase in performance. The average variation between the theoretical and experimental case is about 18% for constant heat flux. The average error imposed on the results due experimental equipment is about 3% for constant heat flux experiments.


Sign in / Sign up

Export Citation Format

Share Document