Atom Ionization in Metal Cutting

Author(s):  
Z. Y. Wang ◽  
James Jacobs ◽  
Pengtao Sun

The inspiration for developing this atomic model comes from Merchant’s models for studying chip strain and shear angle. In this paper the 2D Merchant’s Diagram of Circles has been replaced by atoms of the workpiece and tool. This research reveals that atom losing electrons in workpiece is common in metal cutting. Also at the atomic level, cutting workpiece leads to an electric process to occur, which valence electrons leave atoms of the workpiece material as cutting tool pushing forward, forming a charged zone in the workpiece which weakens its strength and eventually causes them to be removed as cutting chip. In this paper, the charged zone was calculated for cutting 1040 steel with a tungsten carbide tool. Experimental results of electromotive force are presented to support the existence of an electrical charge in metal cutting.

Author(s):  
Salman Pervaiz ◽  
Sathish Kannan ◽  
Ibrahim Deiab ◽  
Hossam Kishawy

Metal-cutting process deals with the removal of material using the shearing operation with the help of hard cutting tools. Machining operations are famous in the manufacturing sector due to their capability to manufacture tight tolerances and high dimensional accuracy while simultaneously maintaining the cost-effectiveness for higher production levels. As metal-cutting processes consume a great amount of input resources and generate some material-based waste streams, these processes are highly criticized due to their high and negative environmental impacts. Researchers in the metal-cutting sector are currently exploring and benchmarking different activities and best practices to make the cutting operation environment friendly in nature. These eco-friendly practices mainly cover the wide range of activities directly or indirectly associated with the metal-cutting operation. Most of the literature for sustainable metal-cutting activities revolves around the sustainable lubrication techniques to minimize the negative influence of cutting fluids on the environment. However, there is a need to enlarge the assessment domain for the metal-cutting process and other directly and indirectly associated practices such as enhancing sustainability through innovative methods for workpiece and cutting tool materials, and approaches to optimize energy consumption should also be explored. The aim of this article is to explore the role of energy consumption and the influence of workpiece and tool materials towards the sustainability of machining process. The article concludes that sustainability of the machining process can be improved by incorporating different innovative approaches related to the energy and tool–workpiece material consumptions.


2020 ◽  
Vol 26 (5) ◽  
pp. 38-46
Author(s):  
Osama Ali Kadhim ◽  
Fathi Alshamma

This study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.


2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
M. SIVARAMAKRISHNAIAH ◽  
C. VIJAYABHASKAR REDDY ◽  
P. SREENIVASULU ◽  
M. SAMRAJ ◽  
◽  
...  

2014 ◽  
Vol 996 ◽  
pp. 603-608
Author(s):  
Johannes Kümmel ◽  
Jens Gibmeier ◽  
Volker Schulze ◽  
Alexander Wanner

The tool and workpiece surface layer states of the tribosystem uncoated WC-Co cutting tools vs. normalised SAE 1045 workpiece material are studied in detail for a dry metal cutting process. Within the system the cutting parameters (cutting speed, feed rate, cutting depth) determine the wear state of the cutting tool and the resulting surface layer state (residual stress) in the workpiece. As the built-up edge can be used as a possible wear protecting layer [1] the influence of built-up edge and wear behaviour of the cutting tool was examined with respect to the workpiece surface layer state for knowledge based metal cutting processing. Small compressive stresses (-60-80 MPa) are induced in the surface layer, that are nearly homogeneous for the highest built-up edge, which lead to the lowest tool wear in combination with lowest cutting temperature.


1985 ◽  
Vol 107 (1) ◽  
pp. 77-80 ◽  
Author(s):  
B. E. Klamecki

The problem of predicting changes in the chip formation process in metal cutting was considered. An analytical model which predicts the shear angle as the cutting tool approaches the end of the workpiece was developed. The model was of the orthogonal cutting geometry with shear along a plane and the shear angle predicted from a minimum shear energy postulate. The model predicted two shear angles near the end of cutting and these were compared with measured shear angles for cutting different work materials with varying rake angle tools.


2014 ◽  
Vol 541-542 ◽  
pp. 579-583
Author(s):  
Zhi Xing Mao ◽  
Chang Tao Cai ◽  
Jing Xing Qi

There are many factors having effects on the cutting performance and useful time of cutting-tools, such as cutting-tools material, geometry parameters, structure and the optimization of cutting parameter, etc. But the condition of cutting-tools edge shouldnt be ignored. As is known to all, the micro gaps of cutting edge extend easily in the process of cutting, and accelerates the wear and damage of tools. As for the current situation of low passivation efficiency in edge, high loss of passivation and uncontrollability in blade shape, some improvements and new technology for applying to tools passivation are proposed based on the analysis and research about carbide tool passivation. Whats more, some exploration experiment will be done. The results show that those passivation technology can improve the processing efficiency of metal-cutting, cutting tool expectancy and reduce manufacturing cost.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


Sign in / Sign up

Export Citation Format

Share Document