Analysis and Research of the Technology Based on Carbide Tool Passivation

2014 ◽  
Vol 541-542 ◽  
pp. 579-583
Author(s):  
Zhi Xing Mao ◽  
Chang Tao Cai ◽  
Jing Xing Qi

There are many factors having effects on the cutting performance and useful time of cutting-tools, such as cutting-tools material, geometry parameters, structure and the optimization of cutting parameter, etc. But the condition of cutting-tools edge shouldnt be ignored. As is known to all, the micro gaps of cutting edge extend easily in the process of cutting, and accelerates the wear and damage of tools. As for the current situation of low passivation efficiency in edge, high loss of passivation and uncontrollability in blade shape, some improvements and new technology for applying to tools passivation are proposed based on the analysis and research about carbide tool passivation. Whats more, some exploration experiment will be done. The results show that those passivation technology can improve the processing efficiency of metal-cutting, cutting tool expectancy and reduce manufacturing cost.

2007 ◽  
Vol 567-568 ◽  
pp. 185-188 ◽  
Author(s):  
Miroslav Piska

Modern trends in metal cutting, high speed/feed machining, dry cutting and hard cutting set more demanding characteristics for cutting tool materials. The exposed parts of the cutting edges must be protected against the severe loading conditions and wear. The most significant coatings methods for cutting tools are PVD and CVD/MTCVD today. The choice of the right substrate or the right protective coating in the specific machining operation can have serious impact on machining productivity and economy. In many cases the deposition of the cutting tool with a hard coating increases considerably its cutting performance and tool life. The coating protects the tool against abrasion, adhesion, diffusion, formation of comb cracks and other wear phenomena.


2021 ◽  
Vol 40 (1) ◽  
pp. 77-86
Author(s):  
Siwen Tang ◽  
Pengfei Liu ◽  
Zhen Su ◽  
Yu Lei ◽  
Qian Liu ◽  
...  

Abstract Al2O3 nano-scaled coating was prepared on micro-textured YT5 cemented carbide cutting tools by atomic layer deposition ALD. The effect of Al2O3 nano-scaled coating, with and without combined action of texture, on the cutting performance was studied by orthogonal cutting test. The results were compared with micro-textured cutting tool and YT5 cutting tool. They show that the micro-texture and nano-scaled Al2O3 coated on the micro-texture both can reduce the cutting force and friction coefficient of the tool, and the tools with nano-scaled Al2O3 coated on the micro-texture are more efficient. Furthermore, the friction coefficient of the 100 nm Al2O3-coated micro-texture tool is relatively low. When the distance of the micro-pits is 0.15 mm, the friction coefficient is lowest among the four kinds of pit textured nanometer coating tools. The friction coefficient is the lowest when the direction of the groove in strip textured nanometer coating tool is perpendicular to the main cutting edge. The main mechanism of the nanometer Al2O3 on the micro-textured tool to reduction in cutting force and the friction coefficient is discussed. These results show that the developed tools effectively decrease the cutting force and friction coefficient of tool–chip interface.


1974 ◽  
Vol 16 (5) ◽  
pp. 322-330
Author(s):  
P. F. Thomason

The transient thermal stresses in an insulated quarter-plane, subject to an instantaneous heat source on a segment of the surface, are determined with the aid of the Green's function for a two-dimensional infinite space. Numerical results for the transient thermal stresses at the surfaces of the quarter-plane are superimposed on previous isothermal results for cutting-load stresses in a π/2 wedge, to provide a model for a metal-cutting tool in the transient stages of a cutting process. The results are related to the problem of the thermal-cracking of cutting tools, and mechanisms of crack nucleation and propagation are proposed for both ceramic and cemented-carbide tools.


2014 ◽  
Vol 682 ◽  
pp. 491-494 ◽  
Author(s):  
Vladislav Bibik ◽  
Elena Petrova

The author considers methods of forecasting metal-cutting tool life based on characteristics of cutting tool material. These characteristics depend on differences in numerical values of physical and chemical properties of tool material due to changes in its composition, structure, and production process variables. The described methods allow obtaining the information necessary for forecasting the tool life beyond the process of cutting, for example at the stage of cutting tool manufacturing. The author suggests using the method of registration of thermo-physical properties of the tool material as a promising forecasting technique.


Author(s):  
Salman Pervaiz ◽  
Sathish Kannan ◽  
Wael Abdel Samad

In machining operation, cutting tool performs a central role towards the overall machining performance. A user from metal cutting community always look for better cutting tools that can enhance productivity by reducing tool wear and cost. Modification in the micro-geometry of cutting edge is termed as edge preparation, and it is performed to improve the machining performance by strengthening the cutting edge, reducing internal stresses of coating and lowering the edge chipping etc. Edge preparation has a controlling influence on the formation of deformation zones, cutting temperature, cutting forces and stresses at the cutting interface. Vibration assisted machining (VAM) concept is gaining fame in the metal cutting sector community for machining difficult-to-machine materials. In VAM, cutting tool moves with a small amplitude vibration instead of moving with a constant cutting velocity. This small amplitude vibrational movement provides better machining performance for difficult-to-cut brittle materials. The current numerical study utilized different edge prepared micro-geometries such as sharp edge, round edge and chamfer edge etc. cutting tools, and then these cutting tools were used in the numerical simulations of VAM. The study shows higher magnitude of cutting forces under VAM with tools with modified geometry. The study is beneficial for the metal cutting community and opens new areas of industrial applications.


2017 ◽  
Vol 260 ◽  
pp. 219-226 ◽  
Author(s):  
Viktors Gutakovskis ◽  
Eriks Gerins ◽  
Janis Rudzitis ◽  
Artis Kromanis

From the invention of turning machine or lathe, some engineers are trying to increase the turning productivity. The increase of productivity is following after the breakout in instrumental area, such as the hard alloy instrument and resistance to wear cutting surfaces. The potential of cutting speed has a certain limit. New steel marks and cutting surfaces types allow significantly increase cutting and turning speeds. For the most operation types the productivity increase begins from the feeding increase. But the increase of feeding goes together with machined surface result decreasement. Metal cutting with high feeding is one of the most actual problems in the increasing of manufacturing volume but there are some problems one of them is the cutting forces increasement and larger metal removal rate, which decrease the cutting tool life significantly. Increasing of manufacturing volume, going together with the cutting instrument technology and material evolution, such as the invention of the carbide cutting materials and wear resistant coatings such as TiC and Ti(C,N). Each of these coating have its own properties and functions in the metal cutting process. Together with this evolution the cutting tool geometry and machining parameters dependencies are researched. Traditionally for the decreasing the machining time of one part, the cutting parameters were increased, decreasing by this way the machining operation quantity. In our days the wear resistance of the cutting tools increasing and it is mostly used one or two machining operations (medium and fine finishing). The purpose of the topic is to represent the experimental results of the stainless steel turning process, using increased cutting speeds and feeding values, to develop advanced processing technology, using new modern coated cutting tools by CVD and PVD methods. After investigation of the machined surface roughness results, develop the mathematical model of the cutting process using higher values of the cutting parameters.


SINERGI ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 171
Author(s):  
Sobron Yamin Lubis ◽  
Sofyan Djamil ◽  
Yehezkiel Kurniawan Zebua

In the machining of metal cutting, cutting tools are the main things that must be considered. Using improper cutting parameters can cause damage to the cutting tool. The damage is Built-Up Edge (BUE). The situation is undesirable in the metal cutting process because it can interfere with machining, and the surface roughness value of the workpiece becomes higher. This study aimed to determine the effect of cutting speed on BUE that occurred and the cutting strength caused. Five cutting speed variants are used. Observation of the BUE process is done visually, whereas to determine the size of BUE using a digital microscope. If a cutting tool occurs BUE, then the cutting process is stopped, and measurements are made. This study uses variations in cutting speed consisting of cutting speed 141, 142, 148, 157, 163, and 169 m/min, and depth of cut 0.4 mm. From the results of the study were obtained that the biggest feeding force is at cutting speed 141 m/min at 347 N, and the largest cutting force value is 239 N with the dimension of BUE length: 1.56 mm, width: 1.35 mm, high: 0.56mm.


1988 ◽  
Vol 110 (4) ◽  
pp. 333-338 ◽  
Author(s):  
T. C. Ramaraj ◽  
S. Santhanam ◽  
M. C. Shaw

Refractory metal cutting tools exhibit an unusually high probability of edge chipping and gross fracture when suddenly unloaded after cutting a strong material at high speeds and feeds. After identifying three possible mechanisms of brittle fracture when a cutting tool exits a cut, that associated with so-called “foot” formation is discussed in detail. This involves a sudden shift from steady state chip formation by concentrated shear to gross fracture of the workpiece as the end of the cut is approached. The other possible mechanisms are discussed in a companion paper to follow.


2015 ◽  
Vol 723 ◽  
pp. 910-913
Author(s):  
Shi Long Gao ◽  
Li Bao An ◽  
Xiao Chong Wang ◽  
Song Gao

Some engineering materials have excellent performances, but the machining of these materials is a problem. It is very inadequate to meet machining requirement only using traditional cutting tool materials. Therefore, exploring the machinability of difficult-to-machine materials and applying appropriate cutting tool materials have drawn much attention in metal cutting industry for guarantied product quality and productivity. Cubic boron nitride (CBN) has been recognized as one of the most suitable cutting tool materials due to its high hardness, high wear resistance, high chemical inertness, and excellent chemical stability in high temperature. Research on various aspects of CBN cutting performances has been conducted in recent years. This paper presents the progress on machining difficult-to-machine materials using CBN cutting tools.


Author(s):  
Z. Y. Wang ◽  
James Jacobs ◽  
Pengtao Sun

The inspiration for developing this atomic model comes from Merchant’s models for studying chip strain and shear angle. In this paper the 2D Merchant’s Diagram of Circles has been replaced by atoms of the workpiece and tool. This research reveals that atom losing electrons in workpiece is common in metal cutting. Also at the atomic level, cutting workpiece leads to an electric process to occur, which valence electrons leave atoms of the workpiece material as cutting tool pushing forward, forming a charged zone in the workpiece which weakens its strength and eventually causes them to be removed as cutting chip. In this paper, the charged zone was calculated for cutting 1040 steel with a tungsten carbide tool. Experimental results of electromotive force are presented to support the existence of an electrical charge in metal cutting.


Sign in / Sign up

Export Citation Format

Share Document