A Non-Orthogonal Constitutive Material Model for Advanced Woven Fabrics Based on a Mesoscale Unit Cell

Author(s):  
Ozan Erol ◽  
Brian M. Powers ◽  
Michael Keefe

Advanced woven fabrics can provide a wide range of mechanical properties since the yarns can be arranged in different architectural patterns thus allowing the fabric structure to be tuned based on the specific needs. This adjustable nature makes them an attractive material choice for applications where versatility is highly desired. Hence, there is an increasing interest in woven fabrics in the recent years. They have been used in various applications such as deployable structures, protective garments, medical scaffolds and composites. With the increased interest, there is a need for efficient and accurate computational tools to investigate the mechanical behavior and deformation of woven fabrics for specific applications. Although there are several computational models in the literature that can model uniaxial and biaxial behavior of woven fabrics, there are not any commonly accepted material models for woven fabrics due to the complex interaction of trellising and deformation. Here, we propose an easy to implement constitutive material model based on a mesoscale unit cell of the woven fabrics. The proposed model utilizes the two prominent deformation mechanisms affecting the mechanical response at the mesoscale level: (1) Yarn stretching, and (2) shearing. These mesoscale mechanisms are mechanistically implemented within an unit cell by using truss and rotational springs to generate the mechanical response of the woven fabric. The yarns’ nonlinear mechanical behavior is modeled with non-linear trusses and assumed to be pin-jointed at the center of the unit cell. The truss elements are allowed to rotate at the pin-joint reproducing the yarns’ relative rotational motion during shearing. The fabric’s shear resistance involves two components: yarn-to-yarn relative rotation/sliding and yarn locking due to the yarn transverse compression. These components of the fabric shear resistance are modeled as a non-linear rotational spring located at the pin-joint which generates a moment resisting the shear deformation. The developed forces and moments from the trusses and rotational spring within the unit cell structure are then used to determine the continuum stress state of the material point. The material properties and parameters defined in the proposed model are easy to obtain from uniaxial tensile and shear tests on fabrics. To validate the material model, plain weave Kevlar KM2 fabric is modeled by replicating the standard uniaxial tensile and bias extension tests. The results obtained show that the material model provides a good description of the in-plane deformation and mechanical response.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


Author(s):  
Marinela Peto ◽  
Oscar Aguilar-Rosas ◽  
Erick Erick Ramirez-Cedillo ◽  
Moises Jimenez ◽  
Adriana Hernandez ◽  
...  

Abstract Lattice structures offer great benefits when employed in medical implants for cell attachment and growth (osseointegration), minimization of stress shielding phenomena, and weight reduction. This study is focused on a proof of concept for developing a generic shoulder hemi-prosthesis, from a patient-specific case of a 46 years old male with a tumor on the upper part of his humerus. A personalized biomodel was designed and a lattice structure was integrated in its middle portion, to lighten weight without affecting humerus’ mechanical response. To select the most appropriate lattice structure, three different configurations were initially tested: Tetrahedral Vertex Centroid (TVC), Hexagonal Prism Vertex Centroid (HPVC), and Cubic Diamond (CD). They were fabricated in resin by digital light processing and its mechanical behavior was studied via compression testing and finite element modeling (FEM). The selected structure according to the results was the HPVC, which was integrated in a digital twin of the biomodel to validate its mechanical performance through FEM but substituting the bone material model with a biocompatible titanium alloy (Ti6Al4V) suitable for prostheses fabrication. Results of the simulation showed acceptable levels of Von Mises stresses (325 MPa max.), below the elastic limit of the titanium alloys, and a better response (52 MPa max.) in a model with equivalent elastic properties, with stress performance in the same order of magnitude than the showed in bone’s material model.


2020 ◽  
Vol 7 (2) ◽  
pp. 026522
Author(s):  
Jinhui Wang ◽  
Xiaoguang Yuan ◽  
Peipeng Jin ◽  
Hongbin Ma ◽  
Bo Shi ◽  
...  

2012 ◽  
Vol 165 ◽  
pp. 93-97
Author(s):  
Nagur Aziz Kamal Bashah ◽  
Ahmad Zakaria ◽  
Khairul Za’im Kamarulzaman ◽  
Achmed Mobin ◽  
Mohd Safuan Mohd Abdul Lazat ◽  
...  

The use of High Strength Steels (HSS) for automotive parts improves car performance in terms of structural strength and weight reduction. However it poses major challenges to manufacturing since HSS is prone to springback. Springback causes deviation in part geometry from its intended design thus giving problem to its subsequent assembly process. In this paper, three models for predicting springback were evaluated. First model is based on the Multiple Regression (MR) technique. Second model utilized Hill Orthotropic constitutive material model and the last model employed a neural network predictive model. All the models were evaluated by using tool surface and stamped part historical data that are obtained from three selected springback prone automotive BIW parts representing three different levels of springback severity namely high, medium and small. The results on the low springback part show that the neural network model outperforms the other approaches.


2015 ◽  
Vol 732 ◽  
pp. 337-340
Author(s):  
Jakub Antoš ◽  
Václav Nežerka ◽  
Pavel Tesárek

In order to develop a constitutive material model and to verify its consistency when implemented in a computational code, it is necessary to understand the material and to carry out a comprehensive experimental analysis. This can be a challenging task in the case of composite materials and structures, such as masonry, when using conventional measurements. Strain gauges and allow recording strains at a limited number of discrete points and do not provide sufficient amount of data, thus increasing the cost of the analysis. From that reason a full-field non-contact measurements, such as Digital Image Correlation (DIC), became very popular and valuable for analysis of structures subjected to mechanical loading and precise detection of the onset of strain localization. The presented study deals with tracking the strain localization using DIC in the case of masonry piers loaded by the combination of bending and compression. In such case the strain localizes into more compliant mortar joints while the complete collapse occurs when the masonry blocks fail to transfer tensile stress due to transversal expansion. The obtained data will be used for the validation of a finite element model to predict the behavior of masonry structures.


Sign in / Sign up

Export Citation Format

Share Document